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When a beam emitted from an active monostatic sensor system sweeps across a volume, the echoes

from scatterers present will fluctuate from ping to ping due to various interference phenomena and

statistical processes. Observations of these fluctuations can be used, in combination with models, to

infer properties of the scatterers such as numerical density. Modeling the fluctuations can also help

predict system performance and associated uncertainties in expected echoes. This tutorial focuses

on “physics-based statistics,” which is a predictive form of modeling the fluctuations. The modeling

is based principally on the physics of the scattering by individual scatterers, addition of echoes

from randomized multiple scatterers, system effects involving the beampattern and signal type, and

signal theory including matched filter processing. Some consideration is also given to environment-

specific effects such as the presence of boundaries and heterogeneities in the medium. Although the

modeling was inspired by applications of sonar in the field of underwater acoustics, the material is

presented in a general form, and involving only scalar fields. Therefore, it is broadly applicable to

other areas such as medical ultrasound, non-destructive acoustic testing, in-air acoustics, as well as

radar and lasers. VC 2018 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/
4.0/). https://doi.org/10.1121/1.5052255
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10.1121/1.5052255. The software is also stored online (Lee

and Baik, 2018), where it is subject to future revisions.

I. INTRODUCTION

Echoes, as measured through the receiver of an active

monostatic sensor system, will typically fluctuate from ping

to ping as the beam emitted from the system scans across a

volume containing scatterers or as the scatterers in that vol-

ume move through the beam (Fig. 1). It is essential to under-

stand the echo statistics for accurate interpretation of the

scattering and for modeling system performance. Toward

that goal, understanding the underlying physical processes

that give rise to the fluctuations allows one to accurately pre-

dict and interpret the echo statistics. In the simplest case in

which the propagation medium is homogeneous and there

are no boundaries present (i.e., a “direct path” geometry),

the fluctuations are due to a combination of several statistical

processes: the interference between overlapping echoes

when multiple scatterers are present, the random nature of

the echoes from individual scatterers (not including beam-

pattern effects), and the modulation of the echo due to the

random location of the scatterer in the beam. Once the geom-

etry is further complicated by heterogeneities in the medium

and/or the presence of boundaries, the propagated signals

will become refracted and/or rescattered, giving rise to more

propagation paths that are potentially random and, in turn,

also contributing to the fluctuations. This tutorial presents

key concepts and formulations associated with predicting the

echo fluctuations over a wide range of scenarios in terms of

the physics of the scattering, system parameters, and signal

theory.

The statistical behavior of echoes is important across a

diverse range of active sensor systems and applications

involving the use of either acoustic waves (such as with

sonar, medical ultrasonics, or non-destructive testing) or

electromagnetic waves (such as with radar or light) to study

individual discrete scatterers, assemblages of scatterers, or

rough interfaces that cause scattering. Understanding echo

statistics has been integral in interpreting radar clutter

(Watts and Ward, 2010) and sonar reverberation and clutter

(Ol’shevskii, 1978; Gallaudet and de Moustier, 2003;

Abraham and Lyons, 2010), sonar classification of marine

life and objects on the seafloor (Stanton and Clay, 1986;

Medwin and Clay, 1998), medical ultrasound classification

of human tissue (Eltoft, 2006; Destrempes and Cloutier,

2010, 2013; Oelze and Mamou, 2016), and non-destructive

ultrasound testing of materials (Li et al., 1992). Within each

of these areas, echo statistics are used in the detection and

classification of scatterers, discriminating between scatterers

of interest from clutter (i.e., unwanted echoes), estimating

numerical density of scatterers, and determining the perfor-

mance of sensor systems for use in detection and classifica-

tion of scatterers. The studies of clutter involve

characterizing the statistics of unwanted echoes from fea-

tures or objects in the environment that have properties

resembling the target of interest. The clutter may be due to

the sea surface (radar/sonar/laser), marine life or seafloor

(sonar), human tissue (medical ultrasound), or grains in sol-

ids (non-destructive testing).

The above applications have many elements of statistical

theory in common. Those common elements are treated for-

mally in Goodman (1985) and Jakeman and Ridley (2006).

There are also notable differences between interpreting echoes

from acoustic and electromagnetic systems, such as the pres-

ence of shear waves and polarization, respectively, which are

summarized in Le Chevalier (2002). Differences in echo sta-

tistics between scalar fields (both acoustics and electromag-

netic, ignoring shear waves and polarization, respectively)

and those fields with polarization effects (electromagnetic

only) are summarized in Jakeman and Ridley (2006).

While there has been much work conducted in the area

of echo statistics, the focus has generally involved describing

the variability of echoes through use of generic statistical

functions whose parameters need to be determined from

experimental data. Here, “generic” refers to those functions

generally devoid of a physical basis and derived solely from

FIG. 1. Echoes fluctuate from ping to ping as the sensor beam scans across the scatterers. The resultant ensemble of echoes can be formed into a histogram,

related to the probability density function of the echo magnitude. A simple direct-path geometry involving a homogeneous medium with no boundaries is illus-

trated. Key elements to echo statistics are illustrated—stochastic scattering (f
ðiÞ
bs ) from a single scatterer, random angular location ðhi; /iÞ of scatterer within

the sensor beam causing random modulation of the echo due to the beampattern (b), and randomized interference caused by overlap of echoes from multiple

random phase scatterers (
P
� � �). The statistics is formed over M pings to form a histogram of echo magnitudes in the far right graph. All of these terms are

defined in Sec. IV.
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random signal theory, such as a Gaussian process. These

generic functions include the Rayleigh, Rice, K, Weibull, log

normal, and Nakagami-m distributions (App). Only under a

narrow range of conditions can some of the generic functions

be connected to the physics. There has been a much smaller

set of studies in which the statistics were modeled from first

principles, and hence being predictive, through a combination

of the physics of scattering, sensor system parameters, and

signal theory. To date, there has been no text or tutorial with

a comprehensive coverage of physics-based phenomena.

This tutorial presents the fundamentals of echo statistics

associated with an active monostatic sensor system, written

in a manner that is readable by a wide audience. While much

of the material is motivated by the use of sonar in underwa-

ter applications, the material is broadly applicable to other

types of active acoustic systems used in various media

including air, solids, and biological tissue, as well as to radar

and lasers. Because of the generality of the treatment, the

system used to transmit waves and receive the echoes will

heretofore be referred to as a “sensor system” regardless of

application and whether it involves acoustic or electromag-

netic waves. The formulations describe scalar fields, which

can be directly applied to either acoustic or electromagnetic

signals in the absence of the presence of shear waves or

polarization effects, respectively. Only brief reference is

made to those latter effects.

The emphasis in this tutorial is on describing the statis-

tics of the magnitude of the complex echo (or echo enve-

lope) in terms of the physics of the scattering, sensor system

parameters, and signal processing. More specifically, the

emphasis is on physics-based methods, in contrast to the

generic approaches referenced above. The methods are

focused solely on “first-order statistics” which concern sta-

tistical properties of the signal at a single instant in time.

Also, the material can apply to single beam (fixed or scan-

ning) and multi-beam systems where the scatterer(s) in each

case are randomly located in each beam.

Since there are too many combinations of types of sys-

tems, signal processing, and environments to adequately

describe in a single paper, the material is focused on the fun-

damental aspects of echo statistics due to discrete scatterers

that are not specific to any particular system, signal process-

ing, or environment. The range of beamwidths, types of scat-

terers, and number of scatterers in the predictions illustrate

the corresponding range of statistical behavior of the echoes

from a wide range of system parameters and distributions of

scatterers. However, the formulations are completely limited

to (1) first-order statistics as described above, and are mostly

limited to (2) narrowband signals that are long enough so that

the echoes from the scatterers overlap significantly, (3) direct

path geometries where there are no boundaries present, and

(4) a homogeneous medium. Beyond those limited scenarios,

examples are presented of more complex cases involving

pulsed signals in which the echoes from the scatterers only

partially overlap and the presence of boundaries and/or heter-

ogeneities, including waveguide effects. There are also many

more important cases not covered explicitly, but that can be

described using these formulations as a basis, including

advanced signal processing and complex environments.

A common theme of the material involves predicting

the degree to which the statistics of the echo magnitude devi-

ate from the classic Rayleigh distribution (described in more

detail later), with a focus on the “tail” of the echo distribu-

tions. Experimental observations of echo statistics, particu-

larly in the limit of a large number of scatterers, tend toward

the Rayleigh distribution and deviations from that distribu-

tion contain information on the scatterers. The tail corre-

sponds to the highest values of echo magnitude and will

typically be the part of the echo that is detected above the

background noise or reverberation. This tail is shown to con-

tain valuable information as it is a function of the numerical

density of scatterers, type of scatterer, bandwidth, and

beamwidth.

The tutorial is organized as follows: Secs. II–IV provide

qualitative descriptions and illustrations of concepts that are

important to echo statistics, a summary of the range of appli-

cations that exploit echo statistics, and equations specific to

scattering and random processes (not specific to scattering)

that are common to many formulations in echo statistics.

Sections V–VIII draw from the material in Secs. II–IV in a

presentation of echo statistics formulations for a wide range

of important physical scenarios. These scenarios include

beampattern effects associated with main lobes of various

width, narrowband and broadband signals, completely over-

lapping echoes (long signal) and partially overlapping ech-

oes (short signal), single scatterers and mixed assemblages

of scatterers, elongated and randomized scatterers, and

geometries involving either a direct path and a homogeneous

medium or ones involving the presence of boundaries and/or

heterogeneities. Sections VI and VII include a progression of

cases, all involving a direct path geometry with a homoge-

neous medium using narrowband signals that are long

enough so that the echoes from the scatterers overlap signifi-

cantly. The two sections begin with the case involving no

beampattern effects (omni-directional beam) (Sec. VI), and

then later incorporating beampattern effects (directional

beam) (Sec. VII). Section V, besides providing an overview

of the material of the rest of the tutorial, outlines how the

results in Secs. VI and VII can be extended to more complex

cases, such as the ones given in Sec. VIII. Section VIII draws

from Secs. VI and VII for selected complex cases involving

partially overlapping echoes and the presence of boundaries

and/or heterogeneities. Although many details of the deriva-

tions are not given in Secs. VI–VIII, references to the con-

cepts and equations in Secs. II–IV are given, as well as

references to previously published papers.

II. KEY ELEMENTS OF ECHO STATISTICS

Fundamental to the echo statistics are the (1) various

types of interference between overlapping echoes from mul-

tiple scattering features from a single scatterer, multiple scat-

terers, and/or multiple propagation paths in a heterogeneous

medium or a medium containing boundaries, (2) stochastic

nature of scattering by individual scatterers (not including

sensor system effects), and (3) random modulation due to

random location of the scatterers in the sensor beampattern

(Fig. 1). These elements are first discussed qualitatively with
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important aspects illustrated. Formal mathematical treat-

ments based on the physical processes, sensor system, and

signal types are presented later. All processes are described

quantitatively in terms of the probability density function

(PDF), which is the probability of occurrence of a random

variable for each of its values. The PDF and related quanti-

ties are defined formally in Sec. IV B 1.

A. Interfering signals

Echoes from one or more scatterers can be decomposed

into the sum of the echoes from multiple scattering high-

lights from each individual scatterer, echoes from multiple

scatterers when more than one scatterer is present, and ech-

oes from multiple propagation paths when the medium is

heterogeneous and/or there are one or more boundaries pre-

sent. Regardless of scenario, because of randomness gener-

ally associated with the scatterer or environment, the echoes

will tend to interfere randomly with each other, causing fluc-

tuations from ping to ping.

In order to understand this interference phenomenon, we

first examine the simple case of a single sinusoidal signal

whose amplitude (i.e., envelope) does not vary in time. This

signal corresponds to the echo from a point scatterer fixed in

the beam of a narrowband system. In this case, the amplitude

of the signal is constant [Fig. 2(a)]. The PDF describing this

single-valued quantity is the delta function [Fig. 2(a)]. Note

that when expressing the signal as a complex variable (which

is the case for most of this tutorial), then it is the magnitude
of the signal that is of interest which is equal to the ampli-

tude of the sine wave in this example.

The statistics change dramatically once another signal

with the same magnitude but of random phase is added. This

second signal corresponds to the echo from a second identi-

cal scatterer (or scattering feature or ray path) whose echo

overlaps with that of the first. Now, the PDF of the magni-

tude of the sum is spread over a range of values, depending

on whether the signals added constructively, destructively,

or something in between [Fig. 2(b)]. As more signals of

equal magnitude and random phase are added, the PDF con-

tinues to change and, in the limit of an infinite number of

signals of random phase, the PDF converges to the Rayleigh

PDF [Fig. 2(c)].

This example involved single-frequency signals of infi-

nite extent. This idealized signal can be used to approximate

pulsed (or “gated”) sine wave signals used in many sensor

systems where echoes from scatterers significantly overlap.

The same principles also apply, although with more com-

plexity, to pulsed signals (narrowband and broadband) of

much shorter extent where the multiple signals generally

overlap only partially as presented in Sec. VIII A.

B. Stochastic scattering from a single scatterer

The simplest of scatterers is a point scatterer, as it gives

the same echo regardless of orientation. In this case in which

effects from the sensor system are ignored (i.e., omnidirec-

tional beam) and when using a sinusoidal signal, the echo

magnitude from a single point scatterer is constant with a

delta function PDF [Fig. 3(a)]. For more realistic scatterers

of finite extent, such as elongated ones whose orientation

and/or shape may change in time, the echo magnitude will

vary from ping to ping. Now, the PDF is significantly broad-

ened and the echo statistics are more complex [Fig. 3(b)].

There is some correspondence between this and the for-

mer case involving sinusoidal signals. The echo from a point

FIG. 2. PDFs of magnitude of sums of random phase sinusoidal signals: (a)

The magnitude of one sine wave is single valued, which is described by the

delta function PDF; (b) two sine waves results in a PDF skewed toward the

value associated with complete constructive interference; and (c) the sum of

many sine waves tends to the Rayleigh PDF.

FIG. 3. Echo statistics of the magnitude of scattering amplitude for (a) a

simple point scatterer and (b) a randomly oriented irregular elongated scat-

terer. This does not account for beampattern effects of the sensor system.

The echo is shown to have a singular value for the point scatterer and is dis-

tributed over a range of values for the elongated scatterer.
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scatterer corresponds to a single sine wave with a constant

magnitude. In some cases, an echo from an irregular finite-

sized scatterer can be decomposed into echoes from different

parts of the body of the scatterer, which corresponds to the

addition of multiple random-phased sinusoidal signals. Also,

there are conditions under which the echo PDF from a com-

plex scatterer can be the Rayleigh PDF, which corresponds

to the sum of an infinite number of randomly phased sine

waves.

C. Beampattern effects

The echo measured through the receiver of the sensor

system depends, in part, on the location of the scatterer in

the two-way beampattern. The beampattern will modulate

the echo according to the location, with stronger values

being associated with the scatterer being near the center of

the main lobe and weaker values corresponding to locations

well away from the center. For a randomly located scatterer,

the modulation will correspondingly be random, adding to

the variability of the echo. The distribution associated with

this random modulation is referred to as the “beampattern

PDF.”

The randomizing effects of the beampattern on the echo

from a randomly located object can be illustrated by varying

the solid angle within which the object is allowed to move

(Fig. 4). In this simple example, a circular piston transducer

is used to both send and receive the signal and the solid

angle is centered about the axis of symmetry of the trans-

ducer (which is the center of the main lobe). A point scat-

terer is allowed to move randomly within the solid angle at a

fixed distance from the transducer. In the first case, the solid

angle is 0 and the scatterer is restricted to remain fixed in the

center of the beam where the response is maximum [Fig.

4(a)]. The corresponding echo is single valued from ping to

ping and its PDF is the delta function [right panel of Fig.

4(a)]. As the solid angle increases from zero allowing the

scatterer to randomly move a greater amount across the

beam, the ping-to-ping variability in the echo increases cor-

respondingly [Figs. 4(b)–4(d)]. When only the portion of the

main lobe above the highest sidelobe is involved in the

motion [Figs. 4(a)–4(c)], then the echo PDF is either single

valued or approximately power-law-distributed. However,

once sidelobes are involved, then the echo PDF is more com-

plex, as a non-monotonic characteristic is present due to the

sidelobe structure [“spiky” section of curve in Fig. 4(d),

where values of echo are lower].

These effects will be shown in Sec. VII A 4 to be qual-

itatively similar over a wide range of beamwidths. In

essence, regardless of beamwidth (several degrees or sev-

eral tens of degrees), if the scatterer is randomly located

within a solid angle containing at least most of the main

lobe of the beampattern, then the echo will correspond-

ingly be modulated over a wide range of values of the

beampattern.

III. EXPLOITING ECHO STATISTICS FOR VARIOUS
APPLICATIONS

Understanding and quantifying the statistical variabil-

ity of a signal is useful in a diverse range of applications.

Below are described two common uses of echo statistics,

one in which the variability of the observed signal is used

to infer important information regarding the scatterers, and

the other in which the degree to which the signal varies for

a given scenario is predicted to understand the error or

uncertainty regarding the expected signal. Specific exam-

ples are given in Sec. III A where echo statistics are used as

an inference tool spanning use of sonar, radar, and medical

ultrasound.

A. Inferring information on scatterers

Regardless of the field and type of sensor system, one

can exploit properties of the variability of the echo to make

inferences of important quantities such as number of scatter-

ers, scatterer characteristics, discriminating between and

classifying different types of scatterers, and probability of

false alarm when detecting a scatterer of interest that is inter-

spersed with other unwanted scatterers. Key to the success

FIG. 4. PDF of echo magnitude from point scatterer in the sensor beam, ran-

domly and uniformly located within different solid angles and at constant

range. As illustrated in (a), the echo is delta-function-distributed when the

scatterer is fixed in the center of the beam. Once it is randomly distributed

across all angles as illustrated in (d), the trend of the echo PDF is roughly a

power-law, with some strong structure associated with the sidelobes. The

PDFs in (b) and (c) are monotonic functions and closely approximate a

power law (corresponding to contributions solely from the main lobe) and

are from segments of the near power law (monotonic) portion of the tail of

the PDF in (d). All curves reach a maximum value corresponding to the cen-

ter of the beam, as indicated by the vertical dashed line. The PDF is plotted

on a logarithmic-logarithmic scale to illustrate the near constant slope for

large echo values.
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of the inference is using a model of the echo statistics whose

parameters can be linked to the physical properties of inter-

est. The description of such models is the focus of this

tutorial.

Once the statistics model is determined for the particular

application, there are numerous methods to infer parameters

of modeled echo statistics from data including use of least

squares, maximum likelihood estimators (MLE) (Azzalini,

1996), and method of moment estimators (MME) (Joughin

et al., 1993). Performance of an unbiased estimator can be

evaluated formally through the Cramer-Rao lower bound

(CRLB) method which estimates a lower bound of the vari-

ance of the estimator (Hogg and Craig, 1978). Abraham and

Lyons (2002b) provides an example of use of MLE, MME,

and CRLB for inference of modeled parameters from data

(Appendix B of that paper).

Many applications using echo statistics as an inference

tool are described in citations given in Sec. I. Selected exam-

ples spanning three types of sensor systems—sonar, radar,

and medical ultrasound—are briefly summarized below.

1. Inferring number of scatterers

The shape of the echo PDF can be used to infer the num-

ber of scatterers. This topic has especially seen much atten-

tion spanning many applications, with attempts to connect

parameters of either physics-based or generic PDFs, such as

the K PDF, to numerical density of scatterers. Stanton et al.
(2015) used physics-based methods (such as described in

this tutorial in Sec. VII B) to relate the shape of the PDF of

the magnitude of the echo to the number of scatterers in a

sonar beam in the ocean. The inferences were conducted for

several different types of scatterers (“bottom-like,” “compact

stationary,” and “compact non-stationary”) that ranged in

densities from resolved to unresolved. Lee and Stanton

(2015) used similar physics-based methods with a sonar

beam to infer the numerical density of fish (more details on

this broadband method given in Sec. VIII A). Other studies

have related a parameter of a generic PDF to numerical den-

sity of scatterers. For example, Abraham and Lyons (2002b)

analytically related the shape parameter of the K PDF to

numerical density of scatterers (for certain conditions; gen-

eral and not specific to sonar) and applied the results to using

sonar to estimate numerical density of scatterers on the sea-

floor. Tunis et al. (2005) performed a controlled laboratory

experiment with various dilute solutions containing cancer-

ous cells (acute myeloid leukemia and prostate adenocarci-

noma) to empirically relate a parameter of the gamma

distribution of the medical ultrasound echo to numerical den-

sity of the cells.

For the general case in which there is a mixture of dif-

ferent sized scatterers, Lee and Stanton (2014) have formu-

lated the echo PDF based on various physical parameters—

sensor beampattern, scattering amplitudes, and numerical

density of each type of scatterer. This method is not specific

to any type of sensor system (and is described in Sec. VII C)

and the simulations demonstrated conditions under which

the number of scatterers (especially within the type that

dominated the echo) could be inferred (see Figs. 6 and 7 of

that paper).

2. Discriminating between echo from scatterer
of interest and background

For a single scatterer of interest interspersed within an

aggregation of other unwanted scatterers (in a volume or

on a surface), echoes from the scatterer of interest can be

discriminated from those containing only the surrounding

unwanted or “background” scatterers. Here, the echo con-

taining the scatterer of interest will also be contaminated

with echoes from the background. Ferrara et al. (2011)

conducted an experimental study on the ocean involving

use of radar to detect and classify echoes from ships and

oil rigs. In their data, there were echoes from two types of

regions containing (1) both the scatterers of interest (ships

or oil rigs; one at a time) and the sea surface and (2) only

the sea surface. The experimental radar-echo statistics

data were fit to the generalized K PDF. They demonstrated

that combinations of generalized K parameters (such as

ratios of the parameters) could be used to unambiguously

distinguish between echoes involving the scatterers of

interest (ships and oil rigs) and the background (sea sur-

face) scattering from those due to the surrounding sea sur-

face alone. There was only one false alarm out of 229

detected targets.

3. Removing beampattern effects to isolate properties
of resolved scatterer

While the previous case in Sec. III A 2 involves classify-

ing a scatterer of interest when its echo is confounded with

that of the surrounding background, the case simplifies once

the echo is resolved from the background. This can occur

when the scatterer is suspended in the volume away from

any boundary or other neighboring scatterer. In this case,

through inversion methods, variability due to the scatterer’s

random location in the beampattern can be removed to iso-

late echo variability due to the target alone. The target echo

variability (with no beampattern effects) contains informa-

tion on the scatterer, such as its size and degree to which it is

elongated or rough.

For example, in Clay (1983), the PDF of the echo (as

described in Sec. VII A 1 of this tutorial), which is a function

of both the beampattern PDF and the PDF of the scattering

amplitude of the scatterer, is formulated in terms of a convo-

lution involving each of those individual PDFs. Through

knowledge of the beampattern properties, the effects of the

beampattern are removed from the echoes through deconvo-

lution, leaving only the PDF of the scattering amplitude. The

statistics of the scattering amplitude are then used to classify

the scatterer in terms of its size and type. Although the paper

was intended for use of sonar to detect and classify echoes

from fish, the equations are general and applicable to any

sensor system. Clay’s method was refined in Stanton and

Clay (1986).
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4. Discriminating between different types
of aggregations of scatterers

Oelze and Mamou (2016) reviewed a number of previ-

ously published studies concerning use of medical ultra-

sound to detect and classify in vivo soft tissue. One such

study (Fig. 3 of that paper) combined the spectral content of

the broadband echo [to estimate effective scatterer diameter

(ESD)] with echo statistics data fit to the homodyned K dis-

tribution. The feature analysis plot of ESD versus two

parameters of the homodyned K distribution provided

strong discrimination (with no overlap) between echoes

from three different types of cancerous tumors (mammary)

in rodents (rat fibroadenomas, mouse carcinomas, and

mouse sarcomas).

5. Further considerations

In order for the echo statistics to best be exploited, there

are further considerations in using echo statistics as a tool

with a practical sensor system.

a. Directionality of sensor beam improves inference

techniques. The degree to which the echoes are non-

Rayleigh contains valuable information such as numbers of

scatterers that can be inferred, as summarized above. Once

the echoes are Rayleigh distributed, the amount of informa-

tion to be inferred is limited. The beampattern causes echoes

that may be otherwise Rayleigh-like to be non-Rayleigh

through reducing the effective number of scatterers that are

“seen” by the narrow mainlobe of the system. Furthermore,

echoes that are non-Rayleigh before beampattern effects will

deviate even more from the Rayleigh PDF once the beampat-

tern is accounted for. The process of inferring information

from the field of scatterers can therefore be enhanced or

even optimized through varying, when possible, the width of

the main lobe of the beampattern so that the echoes will be

non-Rayleigh over the range of expected values.

b. Noise and “ tail” of echo PDF. In any practical sensor

system, there will be various sources of noise (including

electronic noise) and background reverberation that will nor-

mally dominate the lower values of echoes. Thus, any infor-

mation to be inferred must generally come from the higher

portion of the echo PDF—that is, the “tail.” Many analyses

focus solely on properties of the tail that is above the detec-

tion threshold of the system.

B. Predicting error or uncertainty in signal magnitude

In many applications, it is desired to predict the magni-

tude of the signal after it has propagated through an environ-

ment. The applications can deal with ones such as those

described above in which one wishes to infer properties of

the environment or scatterers from the signal or other types

of applications in which the performance of the sensor sys-

tem is being studied. Ideally, one wants to know all key

parameters of the environment and scatterers so that the

properties of the signal that propagates through the environ-

ment can be known to 100% certainty. However, due to a

combination of the uncertainties of the values of the many

parameters of the environment [e.g., roughness of surface(s),

material properties, etc.] and scatterers (e.g., number, type,

orientation, etc.) as well as random variations of those same

quantities due to naturally occurring processes, the predicted

signal in a natural environment is normally a random

variable.

To quantify the degree to which the signal varies (that is,

predict what is commonly called its error or uncertainty), the

random variables associated with parameters of the environ-

ment and scatterers must first be estimated. Using these ran-

dom variables, the variability of the signal can then be

predicted through use of physics-based equations as described

below. Regardless of the approach used, there are different

degrees of variability. First, predicting the variability of the

signal due to random variations in the environment and scat-

terers from the expected mean properties. A higher order vari-

ability would be due to errors in those estimates of the

random variations in the environment and scatterers and asso-

ciated deviations from the predicted variability of the signal

(that is, an error in a prediction of a signal PDF).

Beyond the above considerations in which there is no

noise in the system, there is also uncertainty in the predic-

tions associated with random noise. This noise can be due to

a combination of ambient noise in the environment and elec-

trical system noise. Also, diffuse background reverberation

is sometimes considered to be part of the noise. Although

this topic is outside the scope of this tutorial, it is an impor-

tant consideration in modeling practical systems. The noise

can be accounted for through various methods which include

(1) modeling the noise as an additive random complex vari-

able to the (complex) echo signal (Jones et al., 2017) and (2)

modeling the echo magnitude PDF as a “mixture” PDF,

which is the sum of the noise-free echo magnitude PDF and

the noise-only PDF (Stanton and Chu, 2010; Abraham et al.,
2011).

IV. KEY EQUATIONS FOR SCATTERING AND
ASSOCIATED STATISTICAL PROCESSES

Fundamental equations are first given describing deter-

ministic scattering such as for a fixed location or orientation

of the scatterer. In order to describe the scattering for a ran-

domized case such as when the location or orientation vary

randomly, general equations describing statistical processes

that occur in such scenarios are given, which are then incor-

porated into the equations for deterministic scattering to

describe randomized scattering. All of the below equations

relate the echo and its fluctuations directly to the physical

properties of the scatterers and sensor system. This type of

treatment is referred to as “physics based.”

A. Deterministic scattering

The scattering described in this section is from a single

ping or statistical realization. This deterministic description

will then be randomized for use in predicting the statistics of

the echoes. The scattering geometry involves use of an

active monostatic sensor system where the transmitter and

receiver are collocated (Fig. 1). The scattering can involve
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one or multiple scatterers. Also, all analyses involve scatter-

ers distributed within a thin shell of constant radius with the

sensor system at the center. The thickness of the shell is

much smaller than its radius.

This (shell) geometry is for modeling a long narrowband

signal in which echoes from all of the scatterers within the

shell completely overlap. For a sensor system that uses short

pulses to detect a more broadly distributed set of scatterers

(such as in many practical applications), the thickness of this

thin shell can be related approximately to the duration of the

pulse. A rigorous approach to modeling pulsed systems

where the echoes generally only partially overlap is given in

Sec. VIII A.

1. Single scatterer

The voltage Vs received by the sensor system due to the

echo from a single scatterer is

Vs ¼ VTGTGR
r0

r2
e�jxte2jkre�2arb h;/ð Þfbs; (1)

where VT is the voltage applied to the transducer, GT is the

transmitter response (conversion factor of applied voltage to

acoustic or electromagnetic field) which is equal to the

acoustic or electromagnetic signal, respectively, at reference

distance r0 per unit applied voltage VT , GR is the receiver

sensitivity (conversion of acoustic or electromagnetic field

to voltage) which is equal to the voltage signal at the output

of the transducer per unit acoustic or electromagnetic signal,

respectively, incident at the transducer, r is the distance

between the transducer and scatterer, j¼
ffiffiffiffiffiffiffi
�1
p

, x is the

angular frequency of the sinusoidal signal, k is the acoustic

or electromagnetic wavenumber (¼ 2p/k, where k is the

wavelength), a is the absorption coefficient of the medium

so that e�2ar is the two-way loss due to absorption, and

bðh;/Þ is the two-way beampattern of the sensor system

whose values lie in the range [0,1]. The term bðh;/Þ is the

product of the beampatterns of the transmitter and receiver

and the terms h and / are the angular coordinates of the

scatterer. Specifically, bðh;/Þ ¼ bTðh;/Þbrðh;/Þ, where bT

and br are the transmitter and receiver beampatterns, respec-

tively. The term fbs is the backscattering amplitude of the

scatterer and is a complex variable.

In this formulation, the signal is assumed to be at a sin-

gle frequency (i.e., narrowband) of infinite temporal extent.

Also, the acoustic and electromagnetic fields associated with

GT and GR are assumed to be scalar quantities. For acoustics,

this scalar quantity is pressure, the compressional component

of the field, and assumes no shear component in the medium

(although conversion of compression to shear wave can take

place within the scatterer). For the electromagnetic field, the

scalar quantity is one polarization component of the electric

or magnetic field. This assumption in this latter case treats

each polarization component independently and ignores cou-

pling between the components [Chap. 4 of Goodman (1985);

Chap. 4 of Jakeman and Ridley (2006)].

The target strength of the scatterer can be expressed in

terms of the backscattering amplitude and differential back-

scattering cross section rbs as

TS ¼ 20 log jfbsj (2)

¼ 10 log rbs; (3)

where rbs¼ jfbsj2 and the units of fbs (m) and rbs (m2) are sup-

pressed. Note that the term rbs should not be confused with a

similar representation for backscattering cross section, r , that

is commonly used where r ¼ 4prbs and TS¼ 10 logðr =4pÞ:
For simplicity in the analysis, all parameters of the sys-

tem and measurement are assumed to be constant and will be

suppressed in the following equation. From Eq. (1), the mag-

nitude of the echo voltage due to a single scatterer as

received through the monostatic active sensor system is now

given by

~e ¼ jfbsjbðh;/Þ; (4)

where VT , GT , GR, r; and a in Eq. (1) have been suppressed

and r0 ¼ 1m. Here, the magnitude of the signal is based sim-

ply on the absolute value of the signal.

2. Multiple scatterers

The voltage received by the sensor system due to the

echo from an aggregation of N scatterers is

Vs ¼ VTGTGRr0e�jxt
XN

i¼1

e2jkri

r2
i

e�2ari f ið Þ
bs b hi;/ið Þ; (5)

where ri, f
ðiÞ
bs , and ðhi; /iÞ are the range, backscattering

amplitude, and angular location of the ith scatterer, respec-

tively. As with Eq. (1), the signal is assumed to be at a single

frequency of infinite temporal extent. With this type of sig-

nal, there is 100% overlap between the echoes from all indi-

vidual scatterers. The simple summation of echoes from

individuals reflects the assumption that only single-order

scattering is being considered and higher-order scattering

(i.e., re-scattering of echoes between individuals) is assumed

to be negligible.

From Eq. (5), and suppressing the constants of the sys-

tem and measurement in a manner similar to that with the

individual scatterer described above, the magnitude of the

echo voltage due to N scatterers as received through the sen-

sor system is given by

~e ¼
����XN

i¼1

~eie
jDi

����; (6)

where the magnitude of the echo voltage from the ith scat-

terer as received through the sensor system is

~ei ¼ jf ðiÞbs jbðhi; /iÞ: (7)

The assumption that all parameters of the sensor system and

measurement are constant requires the range from the sensor

system to each scatterer to be approximately the same so

that the differences in losses due to spreading and absorption

in the r�2
i and e�2ari terms, respectively, in Eq. (5) associated

with each scatterer are negligible (i.e., r�2
i � r�2¼ constant
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and e�2ari � e�2ar ¼ constant). Specifically, all scatterers are

assumed to be located within a thin shell whose thickness is

small compared with the radius of the shell. However, minor

differences in range within the shell can still lead to signifi-

cant changes in phase of the echo from individual scatterers,

especially when the acoustic or electromagnetic wavelength

is comparable to or smaller than the shell thickness. For sim-

plicity in the formulation, all phase shifts associated with the

ith scatterer are in the term Di, which includes phase shifts

due to differences in range within the shell (i.e., 2kri) and

due to the scatterer and beamformer. For acoustic/electro-

magnetic wavelengths that are small compared with the shell

thickness, Di will generally vary randomly and uniformly in

the range [0 2p] for randomly distributed scatterers.

B. Probability density function and related quantities

1. Definitions and equations

The statistics described herein involve the probability of

occurrence of random variables. This is in contrast to other

types of statistics such as statistical tests (e.g., the t- and

Kolmogorov-Smirnov tests). The principal statistical quanti-

ties used are the probability density function (PDF or p),

cumulative distribution function (CDF), and probability of

false alarm (PFA), which are interrelated from the following

expressions for one-dimensional continuous random varia-

bles (Ol’shevskii, 1978; Papoulis, 1991; and Goodman,

1985). Expressions involving multi-dimensional random var-

iables will appear later in context. While the below expres-

sions are general, the integration limits associated with echo

magnitude statistics later will reflect the fact that the magni-

tude (x) is always positive and p ¼ 0 for x < 0.

Note that the CDF is rigorously referred to as the

“distribution” or “distribution function.” However, the PDF

is also commonly referred to as a “distribution” as well as

“frequency function” throughout the literature. While

“PDF,” “distribution,” and “distribution function” are com-

monly interchanged with no change in meaning (in context),

the term “PDF” will be principally used herein.

The infinitesimal probability dPX of a random variable X
occurring in the differential interval [x, xþ dx] is expressed in

terms of the probability density function pXðxÞ of X,

dPXðx � X � xþ dxÞ ¼ pXðxÞdx: (8)

For a finite interval ½a; b�, the probability is calculated

through the following integral:

PXða � X � bÞ ¼
ðb

a

pXðxÞdx ðprobabilityÞ: (9)

Once a and b are extended to �1 and þ1, respectively, the

integral over all values of X is equal to unity.

The probability of a random variable occurring for all

values of X up to an arbitrary point x is determined from the

integral in Eq. (9) and is referred to as the cumulative distri-

bution function,

CDFXðxÞ ¼
ðx

�1
pXðuÞdu

ðcumulative distribution functionÞ: (10)

As stated above, once these equations are applied to echo

magnitude statistics, pXðuÞ ¼ 0 for u < 0, thus the lower

limit of this integral would be zero.

The PDF can be determined from the CDF simply by

taking the derivative of the above expression,

pX xð Þ ¼ d

dx
CDFX xð Þ½ � probability density functionð Þ:

(11)

The probability of false alarm PFA is commonly used to

determine the probability of occurrence of a random variable

occurring for any value higher than an arbitrary value (Chap.

7 of Ol’shevskii, 1978). From Eq. (9), the PFA of X for all

values above x can be related to the integral of the probabil-

ity density function as

PFAXðxÞ ¼
ð1

x

pXðuÞdu ðprobability of false alarmÞ:

(12)

Using the fact that the integral of the PDF over all values of

its argument is equal to unity, Eqs. (10) and (12) can be used

to express the PFA in terms of the CDF,

PFAXðxÞ ¼ 1� CDFXðxÞ: (13)

The PFA presented in this tutorial is mathematically equiva-

lent to the probability of detection (PD). The nomenclature

varies depending on the context of application. For example,

when the PDF is used to describe the unwanted background

echoes or “noise,” the PFA gives a measure of the probability

that the source of scattering is not from the target of interest.

Conversely, when the PDF is used to describe the anticipated

echo from a scatterer (or “target”) of interest, the PD gives a

measure of the probability of detecting the target of interest.

The limit, x, in Eq. (12) is the threshold above which the PFA

and PD are calculated (Chap. 7 of Ol’shevskii, 1978).

2. Calculating PDFs: Directly and from Monte Carlo
simulations

Some PDFs are, conveniently, closed-form analytical

solutions that can be calculated directly. For example, the

Rayleigh and K PDFs given later, as well as the Gaussian

PDF are in a simple analytical form and are straight forward

to calculate. Other analytical solutions, such as those given

in integral form, are also straight forward to calculate

through numerical integration. However, PDFs for many

realistic cases are generally not in closed form and require

numerical simulations involving the scattering equations to

estimate them. For example, once parameters of the sensor

system and scatterers are specified, models of the echo at the

signal level (not PDF level) such as in Eq. (6) are simulated

to create the statistics of the echo.

A common method to estimate PDFs is through use of

Monte Carlo simulations which generally involves making
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calculations of many statistical realizations of the signal to

form an ensemble from which the PDFs are estimated. For

example, in Eqs. (6) and (7), each ith scatterer will have a

distribution of scattering amplitudes f
ðiÞ
bs and locations

(hi; /i). Each realization involves randomly selecting one of

those scattering amplitudes and locations for each scatterer,

then calculating the signal using Eq. (6). The process is

repeated many times, with each selection of random values

being statistically independent (when independence is

required) from the other selections.

Use of Monte Carlo simulations tends to be more gen-

eral than analytical methods as there are fewer assumptions

and, hence, limitations. For example, the scatterers can be

arbitrarily correlated in space (such as being in a thin layer

or small patch) and can have arbitrary phase-shift distribu-

tions. While many analytical models are restricted to cases

involving independently distributed scatterers whose phases

are uniformly distributed over [0 2p], use of the Monte Carlo

simulations do not have such restrictions.

Once the many simulations have been completed, the PDF

is commonly estimated by putting the realizations of the signal

into “bins” to form a histogram. For an analysis of echo magni-

tude statistics in the example described above, the result of

each calculation is put into a magnitude bin (i.e., quantized

value of echo magnitude) so that a histogram can be formed.

These simulations require many realizations so that there can

be correspondingly many narrow bins in order to produce a his-

togram that is an accurate representation of the actual PDF.

This binning approach is intuitive and is a method used

in this paper, when appropriate, due to its simplicity.

Conditions under which this method are used depend upon a

combination of the type of structure in the PDF and corre-

sponding number of realizations required to model that struc-

ture. In some cases, such as for a smoothly varying PDF, the

computation time is reasonable. Calculations of PDFs for other

applications where there is structure such as the presence of

narrow peaks or nulls in the PDF curve may require more real-

izations and correspondingly significant computer time. When

making too few calculations in this latter case, there can be

artifacts in the result, such as smoothed or completely missed

peaks or nulls. Thus, when there is the presence of narrow

peaks or nulls in the PDF, a closed-form analytical method is

used in this paper to determine the PDF, when possible.

Beyond these approaches, the kernel density estimation (KDE)

method was used to reduce the number of realizations needed

to produce a reliable estimate of the echo PDF (Botev et al.,
2010; Lee and Stanton, 2015; Scott, 1992). The calculations

illustrated in this paper typically involve 107 realizations.

Finally, for applications that extract information from

the tail of the PDF, estimation methods such as importance

sampling can be used to reduce the variance in the estimate

and to increase the efficiency of the Monte Carlo process

through selectively sampling the more desired (tail) samples

(Agapiou et al., 2017).

3. Non-uniform spacing of bins

Depending upon the types of features one is investigat-

ing in a PDF, the curves will either be plotted on a linear-

linear or logarithmic-logarithmic scale. While the former

scale may be more intuitive, the latter is especially useful

when examining the tail of the PDF which typically has low

values relative to the maximum. Choice of type of scale

influences how the bins are determined. For linear-linear

plots of PDFs, equally-spaced bins for the horizontal axis

are normally used. However, when plotting PDFs on a

logarithmic-logarithmic scale, the width of the bins should

be equal on a log scale, which is non-uniform on a linear

scale. Otherwise, if the bins were equal on a linear scale, but

plotted on a log scale, the density of points on the plots

would increase throughout the plot, and not fully character-

ize the shape of the PDF.

4. Normalization

a. Vertical scale. The probability of a variable occur-

ring over any of the values of the random value x over the

entire range is, by definition, unity. Therefore, the integral

over x of any PDF over all values is unity. PDFs are com-

monly derived with a constant factor introduced that is deter-

mined through normalizing the area under the PDF curve to

unity. From this property, it follows that the CDF will begin

at a value of 0 for the smallest value of x and reach its maxi-

mum value of unity at the largest value of x. Similarly, the

PFA will begin at unity and decrease to the value of 0 for the

corresponding smallest and largest values of x, respectively.

b. Horizontal scale. In some applications, it is also

important to normalize the (horizontal) scale associated with

the random variable. This can be the case when the calibra-

tion of the system is not known accurately, the propagation

loss of the signal in the medium is not known accurately, or

when only the shape of the PDF, CDF, and PFA are of inter-

est regardless of the echo strength. Through normalization,

only the relative values of the random variable will be con-

sidered. One convenient approach is to normalize the ran-

dom variable by its root-mean-square (rms) value hx2i1=2

and plot the PDF, CDF, and PFA versus the random variable

divided by hx2i1=2
, where h� � �i is the average over a statisti-

cal ensemble of values. In this case, the area under the PDF

curve (with an argument normalized by hx2i1=2
) is preserved

under the transformation and is unity.

Regardless of the type of scale (linear-linear or logarith-

mic-logarithmic) or uniformity of spacing of bins, all nor-

malizations are first calculated on a linear-linear scale. For

example, an equation such as Eq. (9) is on a linear-linear

scale and can be used to normalize the PDF to unity while

accounting for non-uniform spacing in the integral.

C. Fundamental statistical processes relevant to echo
statistics

1. Randomizing the deterministic scattering equations

Random fluctuations of echoes involve several funda-

mental statistical processes. For example, in Eq. (1), the

beampattern is shown to be a function of the angular coor-

dinates. In general, the scatterer will be randomly located

in the beam, making the angular coordinates of the
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scatterer random variables. Since the beampattern is a

function of the random angular coordinates, then the

beampattern function is, in turn, a random variable for a

randomly located scatterer. The scattering amplitude in

Eq. (1) is also generally a randomly variable due to the

random nature of the scatterer. Since the echo ~e in Eq. (4)

as measured through the receiver of the sensor system is

the product of the two random variables, the beampattern

function and scattering amplitude, then ~e is also a random

variable. Finally, once there are multiple scatterers in the

beam of the sensor system, the resultant echo ~e [Eq. (6)],

as measured through the receiver, will be the sum of the

random individual echoes [Eq. (7)] and will, in turn, be a

random variable.

These statistical processes—function of a random varia-

ble(s), multiplication of two random variables, and addition

of random variables—are of wide applicability, are not spe-

cific to sensor systems or scattering, and appear in standard

textbooks on statistics. Formulas summarizing these general

processes are given below for later reference in the scattering

problem. While only the simplest of cases involving one or

two random variables are given, formulas involving more

random variables are given in the references and/or later in

context of the application.

2. Function of a single random variable

If the function Z is a function of the random variable X,

then Z(X) is also a random variable. The formulations relat-

ing the PDF of Z to the PDF of X are based on the fundamen-

tal principle that the probability of occurrence of an event in

one space (X in this case) is the same as that in the trans-

formed space (Z in this case). The resultant PDF pZ(z) is

then given by one of two equations depending upon whether

Z(X) varies monotonically or non-monotonically with

respect to X. Specifically, Z(X) is monotonic with X if it

either solely increases or solely decreases over the range of

X such that for any value of Z, there is only one (unique)

value of X. Conversely, for the non-monotonic case, Z(X)

both increases and decreases over the range of X so that there

can be multiple values of X for a given value of Z [both of

these cases and the below equations are described on pp.

23–27 of Goodman (1985)].

For the case in which Z(X) varies monotonically with

respect to X over the entire range of X, then the following

expressions can be written where the differential probabili-

ties in the two spaces are equated to each other,

dPZðz � Z � zþ dzÞ ¼ dPX ðx � X � xþ dxÞ
ðmonotonicÞ: (14)

From Eq. (8), this can be expressed in terms of the PDFs of

X and Z,

pZðzÞdz ¼ pXðxÞdx ðmonotonicÞ: (15)

Rearranging terms yields an expression for the PDF of Z in

terms of the PDF of X for this monotonic case,

pZ zð Þ ¼
pX xð Þ���� @z

@x

���� j
x zð Þ

monotonicð Þ; (16)

where the absolute value sign is used to keep the expression

for the PDF positive.

In the more complex case in which Z(X) varies non-
monotonically with respect to X over the range of X, the PDF

is described by a similar equation, but summed over M con-

tiguous segments where Z(X) varies monotonically within

each segment,

pZ zð Þ ¼
XM

m¼1

pX xmð Þ���� @z

@xm

���� j
xm zð Þ

non-monotonicð Þ: (17)

Here, x(z) and xm(z) in Eqs. (16) and (17) are the inverse

functions z�1(x) and z�1(xm), respectively. In practice, these

inverse functions can be determined numerically from the

forward analytical function, plots, or tables of z(x) and z(xm).

3. Function of two random variables

The above analysis involving a function of one random

variable is extended to the case of a function of two random

variables. In this case, if the function Z is a function of the

random variables X and Y, then Z(X, Y) is also a random vari-

able. Relating the PDF of Z to the PDF(s) of X and Y
involves the same process as in the previous case of one ran-

dom variable in which the probability of occurrence of an

event in one space is set equal to that of the other space. This

process generally involves first determining the Jacobian of

the transformation relating the two spaces, although that will

not be shown explicitly below (Papoulis, 1991).

From Eq. (6-35) of Papoulis (1991), the probability of Z
occurring for any value below z is given in terms of x and y as

PZðZ � zÞ¼
ð ð

Dz

pX;Yðx; yÞdydx; (18)

where PZ (Z � z) is also the CDFZ. Here, pX;Yðx; yÞ is the joint

probability density function of the random variables X and Y,

and DZ is the region or regions in the xy plane containing val-

ues of x and y where Z(X,Y) � z (DZ is illustrated in Fig. 6-7 of

Papoulis, 1991). This equation for PZ (Z � z) is a two-

dimensional form of Eq. (10). The PDF of z can be expressed

by taking the differential of PZ (Z � z) above,

pZðzÞdz ¼ dPZðz � Z � zþ dzÞ ¼
ð ð

dDz

pX;Yðx; yÞdydx;

(19)

where dDz is now the differential region or regions(s) in the

xy plane whereby the values of x and y are bounded by the

differential area determined by the range z � Z � zþ dz
[Eq. (6-36) and Fig. 6-7 of Papoulis, 1991].

This equation is complex to solve and depends upon the

characteristics and form of pX;Yðx; yÞ: For simple forms such

as Z¼XY and Z¼XþY, where X and Y are independent
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random variables, then the solution for pZ(z) in each case is in

closed form. Since those two cases are used throughout this

tutorial, they are treated separately in Secs. IV C 4 and IV C 5.

The more complex case in which Z is a general function of X
and Y is used only once later in the tutorial and the solution

will be given in the context of that application (Sec. VII A 7).

4. Product of two random variables

If X and Y are random variables, then the product Z¼XY
is also a random variable as described in Sec. IV C 3. If X and

Y are independent of each other, then pX;Yðx; yÞ¼ pX(x)pY(y) in

the integrand in Eq. (19), where pX(x) and pY(y) are the PDFs

of the random variables X and Y, respectively. Inserting this

product of the two PDFs into the integrand in Eq. (19), the

PDF pZðzÞ of the product Z¼XY can be shown to be

pZ zð Þ ¼
ð1
�1

1

jxj pX xð ÞpY
z

x

� �
dx: (20)

This equation is from Eq. (6-74) in Papoulis (1991). In that

book, the equation is derived through a method involving

use of a Jacobian of the transformation to map one coordi-

nate system to another. However, this equation can also be

derived directly from Eq. (19) of this tutorial [which is Eq.

(6-36) of Papoulis (1991)] using the change of variables

method illustrated in Papoulis for the ratio of two random

variables (p. 138 of the book). Using that method in this case

for the product of two random variables (Z¼XY), the change

in variables y¼ z/x is used, and the area dxdy for dDz is

mapped to the area (1/jxj)dxdz. Through this mapping, the

double integral for dDz is replaced with a single integral over

x. Replacing dxdy in Eq. (19) with (1/jxj)dxdz, the dz drops

out of both sides of the equation and the integral is only over

dx as shown. The absolute value sign is used for the variable

x so that the differential area will be positive for all values of

x. Note also that the term jxj in the factor (1/jxj) for the area

is equal to the absolute value of the Jacobian of the transfor-

mation in the derivation of Eq. (6-74) in Papoulis (1991).

Once Eq. (20) is used in physical applications, the range

over which one or more of the physical parameters may be

constrained and its corresponding PDF will be zero outside

of that range. The integration limit(s) may reflect that con-

straint by only spanning the range over which the PDF is

non-zero as shown later.

5. Sum of random variables

There is a variety of methods to evaluate the PDF of the

sum of independent random variables, ranging from purely

analytical to purely numerical. Sometimes, a “purely” analyti-

cal method still requires numerical evaluation, such as when

an integral or series summation are involved and numerical

integration or summation are performed, respectively. Two

common methods are discussed below: the method of charac-

teristic functions and Monte Carlo simulations.

a. Method of characteristic functions. A commonly

used analytical method involves use of characteristic func-

tions (CFs) where the CF of a random variable is the Fourier

transform of its PDF (Goodman, 1985). Addition of an arbi-

trary number of independent random variables involves first

taking the product of their corresponding CFs. This product is

the CF of the sum of the random variables. The PDF of that

sum is then the inverse Fourier transform of the CF product.

This CF approach can be derived from Eq. (18) for the

case of Z¼Xþ Y where Z, X, and Y are all random variables.

Since the random variables, X and Y, are independent of

each other, then pX;Yðx; yÞ¼ pX(x)pY(y). Using this relation-

ship in the integrand of Eq. (18), the PDF of Z, pZðzÞ, can be

shown to be the convolution of the two functions, pX(x) and

pY(y). This convolution can then be shown to be equivalent

to the product of the Fourier transforms of pX(x) and pY(y).
Since these Fourier transforms are, as defined above, the CFs

of the two functions, then the method of characteristic func-

tions follows as described above (Goodman, 1985; Papoulis,

1991). The method is extendable to the sum of an arbitrary

number (N) of independent random variables by first

expressing the convolution integral by formulating the sum

of two random variables where one of the random variables

is the sum of N�1 random variables and the other random

variable is the remaining variable. The PDF of the sum of

the N�1 random variables is determined through a similar

process involving the sum of N�2 random variables, and so

on. After completing this iterative process, the PDF of the

summed N random variables is related to the product of the

Fourier transforms of the PDFs of the N random variables.

Acoustic and electromagnetic signals are complex and

normally constructed of a real and imaginary term, making

them two dimensional. Since the method of characteristic

functions is extendable to multi-dimensional variables, this

method can be applied to determine the PDF of the sum of

complex signals. For the case in which the phase of the

summed signal is uniformly distributed [0 2p] and each com-

ponent of the signal has a zero mean (i.e., a “circularly sym-

metric signal” in the complex plane), then the CF and PDF

of the signal magnitude are a Hankel transform pair.

Application of the CF to calculate the PDF of the magnitude

and magnitude squared of complex signals is summarized in

Jakeman and Ridley (2006, Chap. 4), including an extension

to signals where the phase is not uniformly distributed.

Methods to numerically evaluate the PDF for circularly sym-

metric signals (via the CF and Hankel transform) are given

in Drumheller (1999).

Barakat used a broadly similar approach to the Hankel

transform method by extending the 1D CF method to circu-

larly symmetric complex signals through constructing an

orthogonal component of the sum, equal in magnitude to the

original single component of the sum, resulting in an exact,

analytical expression for the PDF of the magnitude of the

sum of complex random variables (Barakat, 1974). However,

our experience in applying the Barakat approach has resulted

in convergence issues due to truncation of the infinite series

summation that must be evaluated (Chu and Stanton, 2010;

Lee and Stanton, 2014).

b. Monte Carlo simulations. The method of Monte

Carlo simulations is discussed in more general terms in Sec.

IV B 2 and will only be briefly summarized here in the context
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of adding random variables. This is a commonly used numeri-

cal approach that involves simulating a statistical ensemble of

a large number of realizations of the process of interest so

that the PDF can be formed. Performing Monte Carlo simula-

tions to evaluate the sum of random variables in predictions

of scattering will provide a stable and accurate solution (see,

for example, Stanton et al., 2015). When using this method to

simulate signals associated with a sensor system, random var-

iables are normally added through (1) a phasor addition in the

frequency domain of single frequency or narrowband signals

of long enough extent that the echoes are completely overlap-

ping [such as with Eq. (6)] or (2) addition in the time domain

of short signals when the echoes are only partially overlap-

ping and/or when broadband signals of any duration are used

(Sec. VIII A). In the case of phasor addition, the signals are

first represented in complex form and then the real and imagi-

nary components are added separately before being recom-

bined to calculate the signal magnitude.

6. Sum of infinite number of random variables (central
limit theorem; Rayleigh PDF)

In the limit of the sum of an infinite number of indepen-

dent complex random variables, drawn from identical distri-

butions with uniformly distributed phases, each of the two

independent components of the sum tends to a Gaussian

PDF, with zero mean and equal variance. This is referred to

as the central limit theorem (CLT) and is integral to many

treatments of random variables (Goodman, 1985; Jakeman

and Ridley, 2006). The statistics of the magnitude of the sum

can be shown to be the Rayleigh PDF,

pRay xð Þ ¼ 2x

kR
e�x2=kR ; x � 0 Rayleigh PDFð Þ: (21)

where kR ¼ hx2i is the mean square magnitude.

From Eqs. (10) and (13), the CDF and PFA associated

with the Rayleigh PDF are

CDFRayðxÞ ¼ 1� e�x2=kR ; x � 0 ðRayleigh CDFÞ;
(22)

PFARayðxÞ ¼ e�x2=kR ; x � 0 ðRayleigh PFAÞ; (23)

where the lower bound in the integral in Eq. (10) is zero

since pRayðxÞ ¼ 0 for x < 0.

The Rayleigh PDF is widely used in describing echo sta-

tistics. It is commonly used as the “starting point” in describ-

ing the statistics of the echo magnitude, especially when there

are many scatterers or many highlights from an individual

scatterer contributing to the echo. When the statistics do not

follow the Rayleigh PDF, deviations of the statistics from the

Rayleigh PDF are frequently described. The deviations in the

higher values of the echo magnitude, i.e., the “tail” of the dis-

tributions, are of particular interest. The term “non-Rayleigh

statistics” is commonly associated with those distributions

that deviate from the Rayleigh PDF. The Rayleigh PDF and

associated CDF and PFA are illustrated (Fig. 5).

V. IN-DEPTH TREATMENT OF ECHO STATISTICS:
OVERVIEW

As discussed in Sec. I, various important aspects of echo

statistics will now be examined in detail. The treatment will

draw from the concepts and equations given in Secs. II–IV.

Generally, deterministic equations for the echo magnitude

[Eqs. (4) and (6)], which are based on solutions to the wave

equation, are randomized with respect to various physical

quantities such as random location in beampattern and ran-

dom orientation of scatterer. They are randomized using fun-

damental statistics equations given in Sec. IV C. This

approach differs from other approaches such as first random-

izing parameters of the governing differential equation before

solving the equation [see, for example, the summary in Sec.

12.6 of Jakeman and Ridley (2006), and references therein].

In Sec. VI, the treatment begins with the simplest of

cases—single-frequency signals of infinite extent in which

echoes from all scatterers completely overlap and direct path

FIG. 5. Rayleigh PDF and associated CDF and PFA. The curves were calculated with the analytical solutions given in Eqs. (21), (22), and (23), respectively.

Each function is denoted by the term F . The functions are plotted on both linear-linear and logarithmic-logarithmic scales in (a) and (b), respectively. With

each function plotted on a normalized scale, the curves are independent of the mean square magnitude of the signal (also, there is no shape parameter). The

normalization of the horizontal scale here and throughout this paper involves dividing the argument (x) of the distribution by its rms level [hx2i1/2] where h…i
represents an average over an ensemble of values. The software used to produce this figure is in the supplementary material at https://doi.org/10.1121/

1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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propagation in a homogeneous medium without the compli-

cating effects due to reflections from boundaries. These ide-

alized signals approximate gated sine waves where the

echoes overlap significantly. In addition, given the impor-

tance of the random modulation effect of the beampattern on

the echo when a scatterer is randomly located in the beam,

the echo statistics are first described without those effects.

This is equivalent to the sensor system having an omnidirec-

tional beam. In Sec. VII, beampattern effects are then incor-

porated into the analysis. In Sec. VIII, the work is further

extended into more realistic and complex cases involving

pulsed signals (narrowband and broadband) in which echoes

may only partially overlap, the presence of a boundary near

a scatterer, and propagation and scattering in a waveguide

with a heterogeneous medium.

A. How to use this material for realistic signals/
environments, and advanced signal/beam processing

The number of combinations of types of systems, sig-

nals, signal processing and beamforming algorithms, and

environments is limitless and cannot be adequately described

within this tutorial. The material is therefore aimed toward

the more fundamental aspects of echo statistics that are not

specific to any particular system or environment, but that

many applications either have in common or could use as a

basis. For example, most material involves the following:

(1) Signal type: Long, narrowband signals are used in

which the echoes from all scatterers completely overlap (in

all cases in Secs. VI and VII, and some cases in Sec. VIII).

(2) Signal processing: The magnitude of the signal as mea-

sured at a single instant in time is measured—that is, “first-

order statistics” is modeled (in all cases in Secs. VI–VIII).

The instant in time may be fixed or randomly selected,

but it is not adaptively chosen according to a particular

echo magnitude. (3) Processing of beam data and/or beam-
forming: Echoes from a single beam are modeled (fixed or

scanning; or one selected from a multi-beam system) in

which the scatterers are randomly distributed in space (in

all cases in Secs. VII and VIII). The echo is sampled from a

single beam for a random spatial distribution of scatterers

and the beam is not steered adaptively to select or focus

on a particular scatterer. (4) Environment: direct path

geometries in which the medium is homogeneous and there

are no reflecting boundaries (in Secs. VI and VII; and one

case in Sec. VIII).

The following cases for systems, signals, and environ-

ments of greater complexity are examined in Sec. VIII: (1)

Signal type and signal processing: pulsed signals are mod-

eled in one example in which the echoes from the scatterers

only partially overlap (Sec. VIII A). In Sec. VIII A, the pulse

is further shortened through use of matched filter processing.

(2) Environment: in two examples, geometries in which there

are one or more boundaries present and there are heterogene-

ities in the medium (Secs. VIII B and VIII C, which cover

boundary interaction and waveguide effects).

The several cases modeled in Sec. VIII, while far from

spanning the many possible complex scenarios, provide

examples for how the fundamental formulations involving

the more simple cases can be applied to the more complex

cases. For example, the case involving a pulsed signal shows

how a time series can be constructed due to the interference

between the partially overlapping echoes from the scatterers

(Sec. VIII A). The examples involving the presence of one or

more boundaries and/or heterogeneities in the medium show

the different types of effects associated with the boundaries

and medium heterogeneities. For a single boundary near a

scatterer, it can provide an added source of interference due

to the interaction of the incident signal and the boundary and

scatterer (Sec. VIII B). For two parallel boundaries and/or a

medium with a local minimum in wave speed, a waveguide

is formed and the signal can propagate along multiple paths

that are guided by the boundaries or local minimum (Sec.

VIII C). These multiple paths represent additional sources of

fluctuations in the echoes.

B. Peak sampling, pulsed signals with boundaries,
and beyond

There are many more important cases not covered

explicitly in this tutorial, but that can be described using

these formulations. For example, there are systems that use

peak sampling signal processing, such as recording the maxi-

mum echo magnitude in a time window or adaptively steer-

ing a beam toward the scatterer with the largest echo. When

multiple scatterers are present, the process of peak sampling

in both cases (time and angle/space) will bias the statistics

toward higher values than the magnitudes modeled with

first-order statistics and a fixed beam. This process involves

“extremal” statistics (Stanton, 1985), which is outside the

scope of this tutorial. However, for the time-based peak sam-

pling, the method in Sec. VIII A that produces a time series

could then serve as a basis of the time series with which a

peak sampling algorithm could be applied. As shown in

Stanton (1985), the bias in this case increases with the ratio

of window duration to ping duration of the signal. For the

case of a scanning beam or multi-beam system adaptively

focusing on the peak echo in a field of multiple scatterers,

this extremal statistics formulation can be adapted from a

time series to a space series of echoes scanned across angles.

The bias here will increase as the angular window is

increased.

Another important case involves use of pulsed signals in

the presence of boundaries in which the echoes from the

scatterers are only partially overlapping. Here, the method

given in Sec. VIII A to produce a time series can be incorpo-

rated into the formulations in Secs. VIII B or VIII C that

involve the presence of boundaries. Furthermore, advanced

signal processing such as peak sampling can also be incorpo-

rated into this case as described above.

VI. IN-DEPTH TREATMENT OF ECHO STATISTICS: NO
BEAMPATTERN EFFECTS

Given the complex effects of the beampattern on the

echo statistics (Fig. 4), fluctuations of the echoes without

the influence of the beampattern are first examined sepa-

rately. This is equivalent to a sensor system with an omni-

directional beam so that the echo value is the same
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regardless of angular location (at constant range) in the

beam. In this simplified case, fluctuations can be due to a

combination of interference between overlapping echoes

and scattering effects. Fluctuations due to those effects are

treated separately below.

A. Addition of random signals (generic signals; not
specific to scattering)

This initial treatment solely involves analyses of generic

random signals, devoid of explicit representation of the sen-

sor system and field of scatterers. This analysis forms the

foundation for the more complex analyses given later that

first involve scattering from objects and, eventually, system

effects. The case of an arbitrary number of arbitrary signals

is first presented, which is then followed by some commonly

used special cases, including the Rice and K PDFs.

1. Arbitrary cases

When N arbitrary complex signals completely overlap,

the resultant signal A is the coherent sum

A ¼
XN

i¼1

aie
jDi ; (24)

where ai and Di are the amplitude and phase of each individ-

ual signal, respectively, and are both considered arbitrary

random variables. Since this equation models sinusoidal sig-

nals, all with the same frequency, the term e�jxt that each

signal has in common, has been suppressed as in the previ-

ous formulations.

Since ai and Di are random variables, then so is A. The

fluctuations of A from realization to realization depend

strongly on the statistical properties of ai and Di. The phase

shifts Di play a major role in the fluctuations. For example,

for the simple case in which ai is constant for all i (i.e.,

ai ¼ a) and Di is randomly and uniformly distributed

over the range 0–2p, A will fluctuate greatly from realiza-

tion to realization due to variability in constructive and

destructive interference effects associated with phase

variability alone (Figs. 2 and 6). In one realization, there

may be complete constructive interference and A is at a

maximum. In another realization, there may be complete

destructive interference and A is at a minimum. And, gen-

erally, A will take on intermediate values due to partial

interference.

The characteristics of the fluctuations in this case also

depend greatly on N as illustrated. When there is only one

signal (N¼ 1), the signal is single valued and the PDF of

the signal magnitude jAj is the delta function (Fig. 2). In

the other extreme in which there are an infinite number of

signals (N¼1), the PDF of jAj is the Rayleigh PDF as

given in Eq. (21) (Fig. 2). The PDF of jAj takes on other

shapes for intermediate values of N (Fig. 6). In the more

general case in which ai is a random variable (not equal),

the curves will fluctuate in a similar fashion and, in the

limit of N¼1, the PDF of jAj will become Rayleigh via

the CLT.

Equation (24) is broadly applicable to the scattering

problem as it could represent the summation of scattering

highlights from within a single scatterer or the summation of

echoes from multiple scatterers. Characteristics of the scat-

terer, sensor system, and scattering geometry can be incorpo-

rated into N, ai, and Di.

2. Sine wave plus noise (Rice PDF)

Equation (24) can be manipulated to model the impor-

tant case of a signal in the presence of noise. In this case,

one of the amplitudes ai is held fixed while the others are

FIG. 6. (Color online) PDFs of magnitudes of sums of N random phase sinusoids of identical amplitude. The phasor addition given in Eq. (24) was evaluated

using Monte Carlo simulations (107 realizations) in which ai¼ constant and Di are randomly and uniformly distributed over [0 2p]. The curves are shown to

vary significantly for small N and approach the Rayleigh PDF for high N. The PDFs are plotted on both linear-linear and logarithmic-logarithmic scales in (a)

and (b), respectively. The curves for N¼ 2 and 3 in this figure are also presented in Jao and Elbaum (1978) using an analytical approach involving characteris-

tic functions (noise-free, r¼1 curves in Figs. 2 and 4, respectively, of Jao and Elbaum). Note that Figs. 2 and 4 of Jao and Elbaum also show those curves to

become rounded once noise is added [similarly, Fig. 2 of Chu and Stanton (2010) illustrates (rounded) PDFs for N sinusoids in the presence of noise for a

20 dB signal-to-noise ratio]. The software used to produce this figure is in the supplementary material at https://doi.org/10.1121/1.5052255. The software is

also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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randomly varied. Pulling the fixed-amplitude signal out of

the summation, Eq. (24) is rewritten,

A ¼ aejD þ
XN

i¼1

aie
jDi ; (25)

where the second term on the right-hand-side, representing

noise, is the sum of a large number of random amplitude,

random phase signals. The PDFs of the magnitudes of the

fixed amplitude and summed signals are the delta function

and Rayleigh PDF, respectively. Here, N must be sufficiently

large so that the magnitude of the summation converges to a

Rayleigh random variable. The PDF of jAj is the Rice PDF

(Rice, 1954),

pRice jAjð Þ¼2jAj 1þcð Þ
hjAj2i

e� 1þcð ÞjAj2þchjAj2i½ �=hjAj2iI0 qð Þ

RicePDFð Þ;
(26)

where

q � 2jAj c 1þ cð Þ
hjAj2i

" #1=2

; (27)

and

c ¼ a2

r2
n

: (28)

The term c is the ratio of the mean squared values of the sine

wave and noise (i.e., the power signal-to-noise ratio or SNR

where the “signal” is the sine wave in this context), rn is the

rms value of the noise term, hjAj2i is the mean square of the

sine wave plus noise [i.e., mean square of Eq. (25)], and I0 is

the zeroth-order modified Bessel function of the first kind.

Note that in the original derivation by Rice, the noise term in

Eq. (25) can also involve the summation of signals of differ-

ent frequencies as well (i.e., more general than the single fre-

quency case shown here).

The shape of the Rice PDF depends strongly on c (Fig. 7).

For example, in the limit as c approaches infinity, the PDF

is close to a Gaussian PDF. This corresponds to the limit of

high SNR where the signal is dominated by the constant

sine wave. In the other extreme, as c approaches zero, the

PDF approaches the Rayleigh PDF. This latter case corre-

sponds to the limit of low SNR where the signal is domi-

nated by the noise. The shape of the Rice PDF changes

smoothly for all intermediate values of c.

In addition to this formula being widely applicable in

modeling noisy signals, it can also be applied to scattering

problems where the “signal” [sine wave in Eq. (25)] is the

mean scattered field and the “noise” [summation term in Eq.

(25)] is the component of the scattered signal that fluctuates

about the mean (Stanton and Clay, 1986; Stanton and Chu,

1992). For example, it could be used to model the fluctua-

tions of the echo from a sphere near a rough interface where

the individual echoes from the sphere and rough interface

are delta-function- and Rayleigh-distributed, respectively.

Or, rather than a rough interface, the sphere could be sur-

rounded by a cloud of smaller scatterers whose individual

echoes are of random phase. If the constant sine wave in Eq.

(25) is considered to represent a single scatterer of interest

(such as the sphere) and the noise term represents the back-

ground reverberation (such as from the rough interface or

cloud of smaller scatterers), then the term c is the signal-to-

reverberation ratio.

3. Special distributions of N or ai (K PDF)

A more complex, but commonly occurring, case is when

N and/or ai in Eq. (24) are random variables. This can be

divided into two categories—one in which Di is randomly

and uniformly distributed over the range 0–2p, and the other

in which Di is non-uniformly distributed. The former

FIG. 7. (Color online) Rice PDF for various values of shape parameter c. The curves were calculated with the analytical solution given in Eq. (26). The PDF

approaches the Rayleigh and Gaussian distributions as c approaches 0 and 1, respectively. The PDFs are plotted on both linear-linear and logarithmic-

logarithmic scales in (a) and (b), respectively. With each function plotted on a normalized scale, the curves are independent of the mean square magnitude of

the signal and only depend upon c. The software used to produce this figure is in the supplementary material at https://doi.org/10.1121/1.5052255. The soft-

ware is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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category will first be discussed. If N follows a negative bino-

mial PDF and its average value tends to infinity, the statistics

of jAj in Eq. (24) for arbitrary ai is described by the K PDF

(Jakeman and Pusey, 1976; Abraham and Lyons, 2002b),

pK jAjð Þ ¼ 4ffiffiffiffiffiffi
kK

p
C aKð Þ

jAjffiffiffiffiffiffi
kK

p
� �aK

KaK�1

2jAjffiffiffiffiffiffi
kK

p
� �

K PDFð Þ;

(29)

where K is the modified Bessel function of the second kind

(and served in the naming of the PDF), C is the gamma func-

tion, aK is the shape parameter, and kK is a scale parameter

equal to the mean square of the signal divided by aK .

The K PDF has a single mode and varies smoothly with

jAj (Fig. 8). The distribution tends to the Rayleigh PDF in

the limit of high aK . Note that the function K also has other,

less common names, including the Basset function and the

modified Bessel function of the third kind.

The K PDF can also be derived in several other ways.

For example, it has been shown that for finite N and if ai fol-

lows an exponential PDF, then jAj is K-distributed (Abraham

and Lyons, 2002b). Beyond methods involving summing

sinusoidal signals, the K PDF has been shown to be due to the

product of two independent random variables: a Rayleigh-

distributed term and one that is chi distributed (Ward, 1981).

This product was later written in extended form as the product

of a Rayleigh-distributed term and the square root of a term

that is gamma distributed (Abraham and Lyons, 2002b). Here,

the square root of the gamma-distributed term is related to the

chi-distributed term through analytical continuation of the

integer number of summed terms in the chi distribution to a

non-integer number in the gamma distribution. In another der-

ivation, the K PDF has also been shown to result from a

Rayleigh PDF whose mean-square value is gamma distributed

(Jakeman and Tough, 1987). Both of these latter derivations

are referred to as a “compound representation.”

Equation (29) has been widely used to describe echo sta-

tistics in both acoustic and electromagnetic applications.

While there has generally not been a direct connection to the

physics of the scattering, the tail of the distribution has gen-

erally followed those from experimental data after an empiri-

cal fit. As discussed above, through the interpretation of

Abraham and Lyons (2002b), the number of scatterers has

been related to the shape parameter of the K PDF for the spe-

cific case in which the amplitudes ai of the individual echoes

are exponentially distributed. Since ai in this case is

observed through the receiver of the sensor system, the expo-

nential PDF includes the effects of both fluctuations from

the stochastic nature of the scatterer and the variability due

to the scatterer being randomly located in the beam. Details

of those effects are given in Sec. VII. Also, in his expression

of a K-distributed magnitude being due to the product of

Rayleigh- and chi-distributed random variables, Ward

(1981) attributed the Rayleigh term as being due to quickly

varying interference between scatterers (such as from phase

shift differences within a patch of scatterers) and the chi

term being due to slowly varying changes in the echo from

larger-scale variations in the “bunching” or patchiness of

scatterers.

The above K PDF involves signals who phases are uni-

formly and randomly distributed over [0 2p]. However,

when the distribution of phases is non-uniform, then jAj can

be described by the generalized K-distribution (not shown)

(Jakeman and Tough, 1987). This distribution is described

by three parameters—kK and aK as given above, plus a third

that describes the non-uniform phase distribution. In addi-

tion, the generalized K PDF in Jakeman and Tough (1987)

can also describe an n-dimensional random walk (general-

ized from the two-dimensional walk for the standard K

PDF). For the case of a non-uniform phase distribution, this

is a random walk with directional bias. Similar to the com-

pound representation of the K PDF above being a Rayleigh

PDF with its mean-square value being gamma distributed,

with this directional bias, the generalized K PDF can be

(compound) represented by a Rice PDF with the mean

square noise and constant amplitude signal components each

FIG. 8. (Color online) K PDF for various values of shape parameter aK . The curves were calculated with the analytical solution given in Eq. (29). With each

function plotted on a normalized scale, the curves are independent of the mean square magnitude of the signal and only depend upon aK . The PDFs are plotted

on both linear-linear and logarithmic-logarithmic scales in (a) and (b), respectively. The software used to produce this figure is in the supplementary material

at https://doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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being gamma distributed in a correlated way (Jakeman and

Tough, 1987). The generalized K PDF can be applicable to

the case in which one or several scatterers dominate the scat-

tering from within a field of many scatterers, thus skewing

the distribution of phases into one that is non-uniform

(Ferrara et al., 2011).

Another generalization of the K PDF is the homodyned
K-distribution (not shown). Like the generalized K PDF, it is

also a three-parameter distribution. And, like the generalized

K PDF, it can also be (compound) represented by a Rice

PDF, but with only the mean square noise component (but

not the constant amplitude component) being gamma distrib-

uted (Jakeman and Tough, 1987).

The properties and potential relations to scattering of

the K PDF, generalizations of the K PDF, and other generic

PDFs are summarized in Destrempes and Cloutier (2010).

4. Adding independent realizations of the complex
signal A

As discussed in Secs. IV C 6 and VI A 1, in the limiting

case of the sum of an infinite number of random complex vari-

ables, the PDF of the magnitude of the sum is Rayleigh distrib-

uted (as per the CLT). Specifically, for Eq. (24) where the

phase shifts Di are randomly and uniformly distributed over the

range 0–2p, in the limit of N¼1, jAj is Rayleigh distributed.

Now, consider the case in which there is an ensemble of statis-

tically independent realizations of the complex signal A (in the

limit of large N) where the magnitude of each realization of A
is Rayleigh distributed and with the same mean square value.

Then by extension of the CLT, the magnitude of the sum of

those realizations of A is likewise Rayleigh distributed, even

for a finite number of realizations. However, if each realization

of A is modulated by a multiplicative term with a magnitude

that is a random variable, the resultant magnitude of the sum of

a finite number of these (complex) signals can possibly be

strongly non-Rayleigh. As described in Sec. VI A 3, such a

modulation can be caused by patchiness of the scatterers,

resulting in echo PDFs that can be derived through a com-

pound representation. Also, when the scatterers are uniformly

distributed (i.e., no patchiness effects), there can also be modu-

lation caused by the beampattern where the echo from the scat-

terer is randomly modulated by its random location in the

beam, causing strongly non-Rayleigh echoes as described in

Secs. VII B and VII C.

B. Complex scatterers with stochastic properties

Scatterers can range in complexity from the simplest of

form, a point scatterer, in which the scattering amplitude is

constant for all orientations, to an arbitrarily shaped object

whose echo varies from orientation to orientation. In this sec-

tion, the statistics of scattering by an individual are examined

in a progression of complexity. The point scatterer, Rayleigh

scatterer (defined below), and smooth and rough prolate sphe-

roids with both fixed and random orientation are modeled. A

summary of scatterers with other complexities are given at the

end.

1. Point scatterer

The simplest case is the point scatterer or, more pre-

cisely, very small scatterer. The dimensions of this scatterer

are sufficiently small compared with an acoustic or electro-

magnetic wavelength that the echo is constant for all orienta-

tions. It is constant because there is only one scattering

highlight from this object and nothing else with which to

interfere. The PDF of the echo magnitude is the delta func-

tion [Figs. 2(a) and 3(a)].

2. Rayleigh scatterer

At the other extreme from a point scatterer is a scatterer

whose echo is Rayleigh distributed. This so-called “Rayleigh

scatterer” can be in many forms. For example, it could be a

small patch of many point scatterers, each with an echo

whose phase is randomly and uniformly distributed over the

range [0 2p]. Or, it could be a single spherical scatterer

whose surface is randomly rough and can be described as a

collection of many scattering highlights bounded by the sur-

face. The echo from each highlight has a phase that is ran-

domly and uniformly distributed over the range [0 2p]. In

each case, from the central limit theorem, the echo from the

patch or rough sphere is Rayleigh distributed [Fig. 2(c); Eq.

(21)]. The fluctuations occur from ping to ping as the patch

or rough sphere are rotated, or from realization to realization

of a randomized spatial distribution of scatterers in the patch

or randomized roughness of the rough sphere.

3. Randomized prolate spheroid

A sequence of formulations is presented, beginning with

the deterministic description of the scattering by a smooth

prolate spheroid at fixed orientation, then randomizing its ori-

entation, and then further randomizing the spheroid by rough-

ening its boundary. In contrast to the Rayleigh scatterer, the

echoes from the randomized prolate spheroid are generally

non-Rayleigh because of the elongated shape of the prolate

spheroid. The degree to which the echoes are non-Rayleigh

can be connected to various parameters of the scatterer

through the physics-based formulas given below. The formu-

las given below are adapted from Bhatia et al. (2015).

a. Smooth boundary, fixed orientation. We begin with a

deterministic description of the scattering by a smooth prolate

spheroid at fixed orientation. The spheroid is modeled as being

impenetrable (acoustically “hard” or “soft” or, with an electro-

magnetic signal, perfectly conducting). Also, the scattering is in

the “geometric optics” or high frequency limit where the acous-

tic or electromagnetic wavelength is much smaller than any

dimension of the spheroid. For simplicity, only echoes from the

front interface are analyzed and waves that travel around the

boundary (i.e., circumferential waves) are ignored. Using the

Kirchhoff approximation and the stationary phase approxima-

tion, the magnitude of the backscattering amplitude of the

spheroid is (Chap. 4 of Crispin and Siegel, 1968)
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jfSSj ¼
1

2
cb1

2

b1
2 cos2bþ c 2 sin2b

smooth boundary; fixed orientationð Þ; (30)

where the “SS” subscript to the scattering amplitude refers

to “smooth spheroid” and b is the angle between the direc-

tion of the incident acoustic or electromagnetic wave and the

plane that is normal to the lengthwise axis of the prolate

spheroid [Fig. 9(a)]. Note that this equation is equivalent to

Eq. (7) of Bhatia et al. (2015), but is in a form in which no

terms have singularities. b¼ 0 and b¼ p=2 correspond to

broadside and end-on incidence, respectively, relative to the

incident wave. The terms c and b1 are the lengths of the

semimajor and semiminor axes of the prolate spheroid,

respectively (the length and width of the spheroid are 2c
and 2b1, respectively). The spheroid is axisymmetric about

the length-wise axis, leading to only one unique value of

semiminor axis. The term b1 is not to be confused with the

beampattern b. The aspect ratio of the spheroid is defined to

be the ratio c=b1 (or, equivalently, length/width). The scat-

tering is a strong function of the aspect ratio and orientation

[Fig. 9(b)]. At broadside incidence, the above formula

reduces to

jfSSj ¼
c

2
: (31)

b. Smooth boundary, random orientation. We now ran-

domize the scattering by first randomizing the orientation.

This is done by making b a random variable with an associ-

ated PDF pbðbÞ. For simplicity, the prolate spheroid will

only rotate in a single plane about its minor axis in a plane

containing the direction vector of the incident plane wave

[Fig. 9(a)].

Since the scattering amplitude fss is a function of the

random variable b, then fss is a random variable as well.

Inserting jfSSj and pbðbÞ into Eq. (16), the PDF of the magni-

tude of the scattering amplitude of a randomly oriented

smooth prolate spheroid is

pSS jfSSjð Þ¼
pb bð Þ����@jfSSj
@b

����j
b jfSSjð Þ

smoothboundary; randomorientationð Þ: (32)

Equation (16) was used because the scattering amplitude in

Eq. (30) varies monotonically over the entire range of orien-

tations. If the scattering amplitude varied non-

monotonically, then Eq. (17) would have been required to

calculate the echo PDF.

Inserting Eq. (30) into Eq. (32) gives the PDF of the

magnitude of the scattering amplitude of a randomly ori-

ented smooth prolate spheroid explicitly in terms of the

dimensions of the prolate spheroid,

pSS jfSSjð Þ ¼ pb bð Þ b1
2 cos2bþ c2 sin2b

� �2

cb1
2 c2 � b1

2ð Þj sin b cos bj

����
b jfSSjð Þ

smooth boundary; random orientationð Þ: (33)

Calculation of the echo PDF requires knowledge of the ori-

entation distribution. For the simple case in which the angles

of rotation are uniformly and randomly distributed over the

range [0 2p], the PDF of b is

pb bð Þ ¼ 2

p
; 0 � b � p

2
rotation in one planeð Þ; (34)

FIG. 9. (Color online) Backscattering by an impenetrable prolate spheroid. (a) Scattering geometry. The term b is the angle between the direction of the incident

wave and the plane that is normal to the lengthwise axis of the prolate spheroid. For simplicity, this illustration is drawn in the plane containing the incident wave

vector and the lengthwise axis. (b) Magnitude of scattering amplitude (backscatter direction) versus angle of incidence b for smooth prolate spheroids. The curves

were calculated with the analytical solution given in Eq. (30). All spheroids, which span a range of aspect ratios from 1:1 (sphere) to 10:1 (most elongated), have

the same volume equal to that of a sphere of radius 0.1 m. Adapted from Bhatia et al. (2015). The software used to produce panel (b) of this figure is in the supple-

mentary material at https://doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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where b only varies over the range 0–p/2 because of the

symmetry of the scattering over the other angles.

The echo PDF for the randomly oriented smooth prolate

spheroid is calculated for a range of aspect ratios (not includ-

ing the case of a sphere where the aspect ratio is unity) by

inserting Eq. (34) into Eq. (33) [Fig. 10(a)]. For each (non-

unity) aspect ratio, the echo PDF is characterized by a

smoothly varying function for most magnitudes, but with

strong narrow peaks at the end points. These peaks are attrib-

uted to the fact that the backscattering near broadside and

end-on incidence varies slowly with orientation angle, which

increases the probability of occurrence at those correspond-

ing echo values. The range of echo values as well as proba-

bility of occurrence are both shown to be a strong function

of aspect ratio of the spheroid. For the case of a sphere, the

echo is constant for all b and the echo PDF is a delta func-

tion [Fig. 10(a)].

c. Rough boundary, random orientation. We further

randomize the scattering by roughening the boundary of

the prolate spheroid, where the roughness here is the devia-

tion from the mean boundary. In this case, the boundary is

randomly rough throughout the entire surface of the spher-

oid. Furthermore, it is assumed to be sufficiently rough

compared with an acoustic or electromagnetic wavelength

such that for any orientation, the magnitude of the scatter-

ing amplitude is Rayleigh distributed. For the randomly

rough surface, the echoes are assumed to be independent

of each other from orientation to orientation (or realization

to realization). In this limiting case, we model the scatter-

ing by being equal to the product of the magnitude of the

scattering amplitude jfssj of the smooth prolate spheroid at

a particular orientation and an independent “modulation”

random variable that follows a Rayleigh PDF. This latter

modulation term has a unity rms and, for each orientation,

the term is statistically independent from its value at all

other orientations. For a randomly oriented prolate spher-

oid, jfssj is also a random variable. Thus, the magnitude of

the scattering amplitude for the randomly rough, randomly

oriented prolate spheroid is the product of two random var-

iables, jfssj and the Rayleigh-distributed modulation term.

The statistics of the echoes from randomly rough, ran-

domly oriented prolate spheroids can be described using

Eq. (20),

prs jfrsjð Þ ¼
ðjfssjmax

jfssjmin

1

x
pSS xð ÞpRay

jfrsj
x

� �
dx

randomly rough boundary; random orientationð Þ;
(35)

where the subscript “rs” refers to rough (randomly oriented)

prolate spheroid and pRay is the Rayleigh PDF of the modu-

lation term [Eq. (21)]. The terms jfssjmin and jfssjmax are the

minimum and maximum values of the magnitude of the

scattering amplitude of the smooth prolate spheroid,

respectively, which correspond to end-on and broadside

incidence. Those two terms replaced the limits �1 and

þ1, respectively, in the integral in Eq. (20) to reflect the

fact that the magnitude of the scattering amplitude of the

smooth prolate spheroid is within the range [jfssjmin,

jfssjmax] and that the corresponding PDF pss is zero for val-

ues of its argument outside that range. Without the above

constraint, the integral still would have been constrained by

the Rayleigh PDF whose argument is limited to only posi-

tive values, which would have led to integral limits of zero

to infinity.

The resultant echo PDFs of the scattering by the ran-

domly rough, randomly oriented prolate spheroid are signifi-

cantly different from the smooth counterpart [Fig. 10(b)].

The curves for each aspect ratio are now smoothly varying,

have a mode, and do not have any singularities.

FIG. 10. (Color online) PDF of magnitude of backscattering amplitude for (a) smooth prolate spheroid and (b) rough prolate spheroid. Each spheroid is ran-

domly and uniformly oriented in a single plane. The axis of rotation (a minor axis of the spheroid) is the normal to this plane, which contains the omnidirec-

tional sensor system. Aspect ratio is varied from 1:1 (sphere) to 10:1 (most elongated). The curves in (a) (not including the sphere) and (b) are calculated using

the analytical solutions given in Eqs. (33) and (35), respectively. Equation (34) was used in each case for the orientation distribution. Equation (33) for pss is

used in the integrand in Eq. (35). The Rayleigh PDF [from Eq. (21)] in the integrand of Eq. (35) is normalized so that the rms amplitude is equal to unity.

From Bhatia et al. (2015). The software used to produce this figure is in the supplementary material at https://doi.org/10.1121/1.5052255. The software is also

stored online (Lee and Baik, 2018), where it is subject to future revisions.
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4. Randomly rough objects with full range of
roughness and circumferential/internal waves

There are many more important complexities of the

scattering and associated echo statistics than described above

and they are summarized briefly below. The above example

involved the simplified case in which the boundary of the

prolate spheroid was impenetrable, only the echo from the

front interface was accounted for, and its roughness was suf-

ficiently large so that the echo was Rayleigh distributed for

any fixed orientation. However, it is not uncommon for an

object to have circumferential and internally refracted/

reflected waves and/or a boundary roughness that spans

small-to-intermediate levels relative to a wavelength of the

incident signal. Each of these latter cases can lead to statis-

tics of the echo that are significantly different than that of

the very rough impenetrable prolate spheroid discussed

above and must be accounted for.

Given the complexity of predicting the scattering by

objects with those various types of waves, the echo statistics

will be summarized below according to a progression of com-

plexity. In Sec. VI B 4 a, effects on the scattering due to cir-

cumferential and internal waves for smooth objects are briefly

reviewed. In Sec. VI B 4 b, the object is roughened, and the

statistics of the echoes from only the front interface are con-

sidered. This is similar to the case of the rough impenetrable

prolate spheroid above but with the added complexity of

accounting for small-to-intermediate roughness where the

echoes are non-Rayleigh. In Sec. VI B 4 c, circumferential/

internal waves associated with penetrable materials are incor-

porated with boundary roughness included.

a. Circumferential and internal waves (smooth

boundary). Objects with common material properties not

only produce a significant echo from the front interface, but

they also support various classes of circumferential and inter-

nally refracted/reflected waves due to incident signals (acous-
tic: Hackman, 1993; Marston, 1992; Numrich and Uberall,

1992; Uberall, 1973; electromagnetic: Chen, 1998; Crispin

and Siegel, 1968; Moser et al., 1981; Murphy et al., 1980;

Newton, 1982; acoustic and electromagnetic: Bowman et al.,
1987; Nussenzveig, 1969). For the case of impenetrable

objects, such as infinitely dense materials for acoustics appli-

cations and perfectly conducting materials for electromag-

netic applications, there is a weak signal that diffracts or

“creeps” around the boundary and reradiates in all directions

including back to the receiver. For the case of penetrable

objects, such as elastic materials for acoustics applications

and dielectric materials for electromagnetic applications,

those diffracted waves also exist. In addition, with elastic

objects, there can be strong surface elastic waves that are gen-

erated from the incident acoustic signal and will travel around

the boundary (in addition to the diffraction boundary wave).

Furthermore, other processes are also involved for the pene-

trable objects such as waves that refract into the interior of

the object and reflect internally. Because of these various

effects, the echo from a smooth symmetrical object such as a

sphere or cylinder will generally be composed of the sum of

echoes associated with the front-facing interface (sometimes

called the “specular” echo), internal transmission and reflec-

tions, and circumferential waves.

The total echo from these objects will vary according to

the constructive and destructive interference between the

individual echoes associated with each of the different scat-

tering phenomena described above. For a smooth object

such as a sphere or cylinder, the phase of the echo associated

with each phenomenon will vary strongly with signal fre-

quency (or more precisely, ka, where a is the radius of the

object). Because of these frequency dependences, which also

vary with each phenomenon, the pattern of echo vs fre-

quency will contain a series of peaks and strong nulls associ-

ated with the constructive and destructive interference,

respectively, between the different phenomena.

b. Front interface only: Small-to-intermediate rough-

ness, Rice PDF. The following discussion concerns the

echo from the front interface only, in isolation from the cir-

cumferential and internal waves.

When the roughness of the surface is smaller than the

wavelength of the incident signal or, more precisely, when

krB < 1, where rB is the standard deviation of the boundary

(or, equivalently, the rms deviation from the mean bound-

ary), the magnitude of the echo from the front-facing surface

of a rough object at normal incidence to that surface is gen-

erally not Rayleigh distributed. This is because the phases of

the echoes from the individual scattering features of the sur-

face are relatively narrowly distributed, in contrast to being

uniformly distributed [0 2p] such as in the above case of the

(very) rough spheroid. This effect has been studied mostly in

the context of scattering by rough planar interfaces and, to a

much lesser extent, for rough bounded objects. In either

case, in the limit of small roughness (i.e., krB 	 1), the echo

PDF will tend to the delta function. In the opposite limit

(i.e., krB 
 1), the echo PDF will tend to the Rayleigh PDF

(or at least be Rayleigh-like) as in the above example.

It has been shown that the echo statistics from the full

range of roughness at normal incidence of a planar boundary

can be described by the Rice PDF, as given above in Eq.

(26) (Stanton and Clay, 1986). In this formulation, the scat-

tered signal is decomposed into the sum of two components,

the coherent mean (constant amplitude) and fluctuation com-

ponent. The PDFs of the magnitudes of the two components

are the delta function and Rayleigh PDF, respectively. The

mean component is related to the reflection coefficient of the

interface modified by the term e�2k2r2
B —a term originally

derived for rough planar interfaces by Eckart (1953). The

fluctuation term is related to the scattering phenomena that

cause deviations in the echo from this mean. These two scat-

tering terms, the constant amplitude and fluctuation compo-

nents, correspond to the sinusoidal signal and noise,

respectively, in the original Rice formulation.

The Rice PDF shape parameter has also been explicitly

connected to parameters of the roughness and sensor system

for rough planar interfaces (normal incidence), as summa-

rized in Stanton and Clay (1986). Parameters of the rough-

ness are the rms deviations (rB) from the normal to the mean

surface and the two-dimensional autocorrelation function

(along the surface) of the surface. Parameters of the sensor
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system are the frequency and beampattern. Although the

studies summarized in Stanton and Clay (1986) are specific

to underwater acoustic signals, the analysis involving the

Rice PDF is formulated for scalar fields and could be applied

to other types of sensor systems, such as radar, when scalar

field representations are appropriate.

These formulations connecting the Rice PDF to fluctua-

tions due to randomized scattering by a rough planar surface

were extended to the case of acoustic scattering by rough

elastic cylinders immersed in a fluid in Stanton and Chu

(1992) and Gurley and Stanton (1993). Because of the com-

plexity of the scattering by the elastic objects, the analysis

in Stanton and Chu (1992) was divided into two formula-

tions—a general one which described all echoes (i.e.,

including those associated with the front interface, the cir-

cumferential waves, and internally refracted waves) and a

simple analysis involving only the front interface. The fluc-

tuations of the echo from the rough front (curved) interface

were related to the Rice PDF in the same manner as with the

case of the rough planar interface involving a scalar field,

but taking into account curvature of the surface. This simpler

approach is clearly an approximation to the other, more gen-

eral, case where the other waves played a major role in the

fluctuations, especially near nulls due to interference effects

(as discussed below). However, the Rice PDF, when used to

model fluctuations of the echo from the front interface only,

was demonstrated in these studies to predict the general

trend of the fluctuations as parameters such as ka and krB

were varied, where a is the mean radius of the rough

cylinder.

An important element in the modeling of both the above

simple and general cases was the fact that the Rice PDF

assumes a noise term whose quadrature (i.e., real and imagi-

nary) phase components have the same mean square values.

However, the quadrature components of the random compo-

nent of the scattered (scalar) signal from rough interfaces are

generally not equal. Furthermore, the fluctuations of the scat-

tered signal are sensitive only to the component of the

“noise” (i.e., fluctuation component of scattered signal) that

is in phase with the mean scattered field. These effects are

quantified and accounted for in Stanton and Chu (1992)

where the Rice PDF shape parameter is formulated in terms

of the in-phase component of the fluctuation component of

the scattered field.

c. Randomized circumferential and internal waves

added to front interface echo; nulls and attenuation

effects. The complexity is now increased by accounting for

circumferential and internally refracting waves so that the

echo consists of all waves—due to the front interface and

circumferential/internal waves. As discussed above, in the

case of the smooth penetrable object, these waves will inter-

fere with each other and cause deep nulls in the pattern of

echo magnitude versus frequency. When the penetrable

object is roughened, the phases of the echoes associated with

the various scattering phenomena will correspondingly vary,

each in a different manner specific to the respective phenom-

enon. The total echo (sum of all components) will fluctuate

from realization to realization due to the random roughness

in a manner broadly similar to that from an impenetrable

rough object but with important differences. For example,

the center frequency of the nulls from the destructive inter-

ference will vary from realization to realization. Because of

the steepness of the null (typically 30 dB variation within a

narrow band of frequencies), the echo at frequencies near

that of the null will fluctuate significantly.

The fluctuations near the null for acoustic scattering by

randomly rough elastic cylinders immersed in a fluid have

been observed in both numerical (Stanton and Chu, 1992)

and experimental (Gurley and Stanton, 1993) studies. In

these studies, the shape parameter of the Rice PDF, when fit

with the simulations or experimental data, is shown to vary

dramatically at frequencies near each null. The shape param-

eter decreases by as much as two orders of magnitude near

the null which corresponds to a similar increase in the degree

to which the echo fluctuates.

The roughness not only affects the phase shifts of cir-

cumferential and internal waves, but also their magnitude. In

one study, the dominant acoustic Lamb-wave (or “plate

wave”) of a spherical elastic shell along all meridional paths

was randomized due to the roughness. The variability in path

length and, hence, phase of this circumferential wave was

related to the roughness. The total Lamb wave echo summed

from all paths was shown to be attenuated exponentially due

to the decrease in coherence of the signal (Stanton et al.,
1998).

Although the above two examples involved scattering of

acoustic waves by elastic objects immersed in a fluid, the

same principles apply to other sensor systems such as for

medical ultrasound or radar applications. In general, when

the phases of these different types of scattered signals vary

randomly due to roughness, then the shape parameter of the

echo PDF will vary significantly near any null in the echo

versus frequency pattern. Similarly, any type of circumnavi-

gating or internally refracting wave can experience attenua-

tion due to the different ray paths adding incoherently.

VII. IN-DEPTH TREATMENT OF ECHO STATISTICS:
WITH BEAMPATTERN EFFECTS

Beampattern effects are now added to the above treat-

ment which involved the statistics of echoes from scatterers

in the absence of beampattern effects (i.e., equivalent to an

omnidirectional beam). Once the scatterers are placed in a

directional beam of the sensor system, the echo received by

the system becomes modulated by the beampattern. If the

location of the scatterer is random, then the modulation is

correspondingly random. In this case, the beampattern func-

tion is a random variable with a PDF referred to as the beam-

pattern PDF.

The effect of the beampattern on echo statistics can be

profound, as discussed in Sec. II C and illustrated (Fig. 4),

and accounting for it can be complex. For example, in the

simplest case of a point scatterer whose scattering amplitude

is delta function distributed, the resultant echo PDF due to

the scatterer being randomly located in a directional beam

has a trend that is approximately power-law with strong

structure superimposed [Fig. 4(d)].

3146 J. Acoust. Soc. Am. 144 (6), December 2018 Stanton et al.



The below treatment begins with a general formula for

the echo PDF due to a single scatterer randomly distributed

in a beam. The properties of the scatterer, spatial distribu-

tion, and beampattern are all arbitrary in this formula.

Following the general formula is a progression of examples

beginning with the simplest of cases—a point scatterer ran-

domly and uniformly distributed within only the mainlobe of

the beam of an axisymmetric transducer (i.e., excluding side-

lobes). The analysis then extends to complex scatterers and

the entire beam (including sidelobes) and, finally, to the case

involving a beampattern from an arbitrary transducer in

which the beampattern is not axisymmetric and a spatial dis-

tribution of scatterers that is not uniform. After the treatment

of single scatterers, the echo statistics associated with multi-

ple scatterers in the beam is presented. In the first set of

examples, all scatterers are identical, which is then followed

by the more general case of assemblages of scatterers of

varying types.

The formulations can be applied to single beam (fixed

or scanning) and multi-beam systems, provided that the scat-

terer(s) are randomly located in the beam. The formulations

are general and are not specific to any particular system.

Although specific types of signal processing or adaptive

beamforming that some systems incorporate are not mod-

eled, the formulations presented herein can serve as a basis

for the modeling as discussed in Secs. V A and V B.

A. Single scatterer randomly located in beam

1. Accounting for beampattern effects in echo PDF

For the case in which a single scatterer is randomly

located in the beam of the sensor system at approximately

constant range, its angular coordinates ðh; /Þ are random

variables. Since the beampattern is a function of these ran-

dom variables, the beampattern function bðh; /Þ is also now

a random variable (Sec. IV C 3) and can be described by the

beampattern PDF, pbðbÞ. Consider now a scatterer whose

scattering properties are random (such as a randomly rough

and/or randomly oriented elongated scatterer). The scattering

amplitude is now a random variable and its magnitude can

be described by the PDF psðjfbsjÞ (Secs. II B and VI B). The

magnitude of the echo ~e received by the system is equal to

the product of the magnitude of the scattering amplitude jfbsj
and the beampattern bðh; /Þ [Eq. (4)]. With both of these

latter two terms being random variables, then ~e is also a ran-

dom variable (Sec. IV C 4). Using Eq. (20), the PDF of ~e can

be written in terms of pS and pb as [Ehrenberg (1972)]

pe ~eð Þ ¼
ð1

~e

1

x
pS xð Þpb

~e

x

� �
dx; 0 � b � 1; (36a)

where x is used to denote jfbsj. The term b (¼ ~e/x) is implic-

itly the argument of pb. Using the same procedure, peð~eÞ can

be expressed in an alternate, but equivalent form

pe ~eð Þ ¼
ð1

0

1

b
pb bð ÞpS

~e

b

� �
db; 0 � b � 1: (36b)

where now jfbsj (¼ ~e/b) is implicitly the argument of pS.

Equations (36a) and (36b) are equivalent because of the

commutative nature of the product of the two random varia-

bles in Eq. (20). The limits of 61 in the integral in Eq. (20)

are reduced to the ranges [~e 1] and [0 1] in Eqs. (36a) and

(36b), respectively, since the values of the beampattern b
only span the range [0 1] and the corresponding beampattern

PDF pb is zero outside that range. Finally, the range

0 � b � 1 is used in each equation as they apply to the entire
beampattern, whereas some applications later will involve

only portions of the beampattern, such as for values of the

mainlobe only above the highest sidelobe. In those cases, the

limits in the integrals are modified accordingly.

These expressions, originally derived by Ehrenberg

(1972) [using Eq. (20)] for echo intensity with identical

form, are given for echo magnitude (i.e., not intensity) in

Ehrenberg et al. (1981) and are also described in reviews in

Stanton and Clay (1986) and Ehrenberg (1989). While use of

one form over the other [Eq. (36a) vs Eq. (36b)] was not

explained in the early papers, it is possible that one form

may be more conducive for evaluation, such as in numerical

integration (Bhatia et al., 2015).

The above integral relationship in Eqs. (36a) and (36b)

between the echo PDF peð~eÞ and the PDFs of the magnitude of

the scattering amplitude and beampattern function is

completely general, as it applies to an arbitrary stochastic scat-

terer that is randomly located (at approximately constant range)

in an arbitrary beampattern over an arbitrary spatial distribu-

tion. The constraint of the scatterers being at approximately

constant range is consistent with Eq. (4) as these equations

apply to the scatterers distributed within a thin shell at a nearly

constant distance from the sensor system. This eliminates the

range-dependent effects in analysis of the echo fluctuations.

2. PDF of spatial distribution of scatterer

The beampattern PDF depends not only on the beampat-

tern function bðh; /Þ, but also the PDF, ph;/ðh ;/Þ; of the

angular location of the scatterer in the beam. This probabil-

ity, in combination with the beampattern function, deter-

mines the degree to which the echo is randomly modulated

by the beampattern. For example, if the scatterer were fixed

in the center of the beam, then ph;/ is a delta function peaked

at ðh ;/Þ¼ (0, 0) and the echo is multiplied by unity for all

realizations [Fig. 4(a)]. In the other extreme, if the scatterer

were randomly located throughout the entire half-space, then

ph;/ is finite for all h and /: In this latter case, the echo is

randomly modulated by all values of the beampattern result-

ing in a wide range of echo values, even for a point scatterer

[Fig. 4(d)].

Two simple examples are treated here involving the

scatterer being randomly and uniformly distributed in a half-

plane (2D) and half-space (3D) at approximately a constant

range. The 2D and 3D cases apply to geometries in which

the sensor system is detecting scatterers that are distributed

throughout a thin semicircular arc and a thin hemispherical

shell, respectively. The 2D case may apply to geometries

where (1) the transducer is a line with a beampattern that

only varies in one plane, (2) the sensor system is located

within a thin layer of scatterers and is looking along the layer
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from within that layer, or (3) the system is in a waveguide

and long-range echoes only vary with respect to one dimension

(such as in the plane parallel to the waveguide boundaries as

described in Sec. VIII C). In all of these cases, only a half-

plane or half-space are considered as the transducer is assumed

to be baffled sufficiently so that there is no “back” radiation.

In each example, ph;/ (which reduces to ph in some

cases) is calculated using Eq. (8), where pXðxÞ in that equa-

tion is used to represent the probability of occurrence of the

scatterer per unit volume at angular location ðh ;/Þ and x
represents the volume V (Chap. 10 of Medwin and Clay,

1998). The term dPX ð¼ dPVÞ in Eq. (8) is the differential

probability of occurrence of the scatterer in the differential

volume dV at location ðh ;/Þ. For the case of the scatterers

being located within a thin hemispherical shell of constant

radius, which is the 3D geometry in most examples in this

tutorial, then dx¼ dV¼ r2sin hdhd/Dr, where r is the radius

of the hemispherical shell, h is the spherical polar angle, / is

the spherical azimuthal angle, and Dr is the thickness of the

shell. For the case of the scatterers being located within a

thin-shelled semi-circular arc of constant radius r, which is

the 2D geometry sometimes used in this tutorial, then

dx¼ dV¼ rdhDwDr, where Dw is the (thin) width of the cir-

cular arc (strip). The total volume of the thin shell in each of

these two cases is 2pr2Dr and prDwDr, respectively.

For a scatterer uniformly distributed within the volume,

then the differential probability of occurrence dPV per unit

differential volume dV is held constant (i.e., dPV=dV¼ pv

¼ constant). Using that constraint, and the fact that the inte-

gral of dPV over the total volume that the scatterer can

occupy is unity [and, hence, dPV=dV¼ pv¼ (total vol-

ume)�1], then pv¼ (prDwDr)�1 and pv¼ (2pr2Dr)�1 for the

2D and 3D cases, respectively. Through these changes in

variables, Eq. (8) becomes dPV ¼ phdh and dPV ¼ ph;/dhd/
for these two cases, respectively, where expressions for ph

and ph;/ are given below.

For the 2D case in which the scatterer is randomly and

uniformly distributed in a half-plane at approximately con-

stant range, the probability density function of the angular

location of the scatterer in spherical coordinates is deter-

mined using the above approach,

ph ¼
1

p
; � p

2
� h � p

2
; fixed / 2D; half-planeð Þ:

(37)

There is no dependence upon h since, at approximately con-

stant range, the scatterer is uniformly distributed within a thin

arc of nearly constant radius in that plane. There is no depen-

dence upon / as it is fixed in this geometry. Note that

although the polar angle h is normally restricted to the range

0 � h � p=2, it is varied over the range �p=2 � h � p=2 for

fixed /. For the case of an axisymmetric beam centered at

h¼ 0 which is typically the major response axis (MRA) of

the beam, the expression ph ¼ 2=p for 0 � h � p=2 has been

used to eliminate redundant calculations (Bhatia et al., 2015).

For the 3D case in which the scatterer is randomly and

uniformly distributed in a half-space at approximately con-

stant range, the probability density function of its angular

location is determined using the above approach (Medwin

and Clay, 1998),

ph;/ ¼
1

2p
sin h; 0 � h � p

2
; 0 � / � 2p

3D; half- spaceð Þ: (38)

Although the scatterers are located throughout all values of

/, ph;/ still does not depend upon / (as in the 2D case

above). However, now ph;/ depends upon h because in this

3D polar-spherical coordinate system, the scatterer is ran-

domly and uniformly distributed within a thin hemispherical

shell in the range 0� h�p/2. Calculations in this coordinate

system involve annular rings (at constant spherical radius),

each located at some angle h with a width of dh and span-

ning all values of /: Since the scatterer is randomly and uni-

formly distributed across all values of / within each ring,

then the probability ph;/ only depends upon the area of each

ring, which is proportional to sin h (which appears in the

expression for dV above). Accounting for the uniform distri-

bution across all / [0, 2p] for a given value of h yields a fac-

tor (2p)�1 in Eq. (38).

For the case in which the beampattern is symmetrical

about the h ¼ 0 axis, ph;/ in Eq. (38) can be integrated over

all / [0, 2p] for the simplified result

ph ¼ sin h; 0 � h � p
2

3D; half-space axisymmetric transducerð Þ: (39)

3. Beampattern PDF for mainlobe only (axisymmetric
transducer, uniformly distributed scatterer)

a. Exact solution. Calculating the PDF of the beampat-

tern function depends upon the complexity of the beam. The

FIG. 11. Diagram illustrating different conditions considered when calculat-

ing beampattern PDF. The portion of b greater than the highest sidelobe,

bSL, varies monotonically with h and Eq. (40) is used to calculate the PDF.

Once the entire beampattern is used, the beampattern varies non-

monotonically and Eq. (46) is used. For the arbitrary value of barb, the beam-

pattern takes on that value three times in this example (b1, b2, and b3 for

m¼ 1, 2, and 3, respectively, and, correspondingly h1, h2, and h3 which are

not shown). The vertical axis is on an arbitrary logarithmic scale to better

illustrate the sidelobe structure.
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simplest case is first examined involving an axisymmetric

beam (i.e., due to a circular planar transducer) in which only

the portion of the mainlobe above the value of the highest side-

lobe is used [Figs. 4(c) and 11]. This results in the beampattern

only being dependent upon a single random variable (spherical

polar angle, hÞ and furthermore varying monotonically with

respect to this angle. Using only the values of the mainlobe

above that of the highest sidelobe is not only easier to calcu-

late, but it also generally relates to the highest values of the

echoes, which have a higher chance of being detectable above

the system noise levels. With these simplifications, Eq. (16)

can be used to describe the beampattern PDF for the case in

which the beampattern is monotonic and dependent upon only

a single random variable,

pb bð Þ ¼ ph hð Þ���� @b

@h

���� j
h bð Þ

; bSL � b � 1; (40)

where bSL is the value of the highest sidelobe of the beam-

pattern and the notation phðhÞ represents ph;/ for this case

where the scatterer distribution does not depend upon /.

This corresponds to the scenario where a scatterer is uni-

formly and randomly distributed either in 2D or 3D as shown

in Sec. VII A 2, but with the restriction that �hSL � h � hSL

(fixed /) and 0 � h � hSL (all /) for the 2D and 3D cases,

respectively, where hSL corresponds to bSL [Figs. 4(c) and

11]. With this restriction, phðhÞ ¼ 1=ð2hSLÞ and phðhÞ
¼ sin h=ð1� cos hSLÞ for the 2D and 3D cases, respectively.

These two latter expressions are calculated in a similar man-

ner as for Eqs. (37) and (39), respectively, except that they

involve use of a smaller volume, subtended by the angle hSL,

over which dPV is integrated for normalization.

The beampattern function for a circular planar trans-

ducer is (Kinsler et al., 2000)

b hð Þ ¼ 2J1 kaT sin hð Þ
kaT sin h

� 	2

; (41)

where aT is the radius of the transducer and J1 is the Bessel

function of the first kind of order 1. The square of the brackets

corresponds to the fact that this is a composite, or two-way

beampattern, being produced by the product of the transmit

and receive beampatterns which are identical to each other.

Using phðhÞ ¼ sin h=ð1� cos hSLÞ from above and Eq.

(41) in Eq. (40), the beampattern PDF for an axisymmetric

beam and associated with the values of the mainlobe above

the highest sidelobe is

pb bð Þ ¼ sin2h

4
ffiffiffi
b
p

cos h 1� cos hSLð ÞjJ2 kaT sin hð Þj

����
h bð Þ
;

bSL � b � 1; (42)

where J2 is the Bessel function of the first kind of order 2.

Here, the scatterers are assumed to be uniformly distributed

at approximately constant range within the mainlobe for

polar angles in the range 0 � h � hSL (all /) (i.e., a 3D

case).

b. Power law approximation for beampattern PDF. The

beampattern PDF, when plotted on a log-log scale, has been

shown to have a negative and nearly constant slope for the

higher values of beampattern (Ehrenberg, 1972) (Figs. 4 and

12 of this paper). This pattern corresponds to the portion of

the mainlobe higher than the highest sidelobe and also

occurs over a wide range of beamwidths (Ehrenberg, 1972).

Under these conditions, the beampattern PDF can be approx-

imated using the following equation (Ehrenberg et al.,
1981):

pbðbÞ ¼ k0b�l; bSL � b � 1; (43)

where the normalization constant k0 ensures the integral of

Eq. (43) over b is unity and is given by

k0 ¼

1� lð Þbl�1
SL

bl�1
SL � 1

l 6¼ 1ð Þ;

� 1

ln bSL
l ¼ 1ð Þ:

8>>>><
>>>>:

(44)

Using Eq. (42) in the limit of b approaching unity or

kaT sin h approaching zero (that is, for angles near the center

of the beam), the exponent in Eq. (43) is (Chu and Stanton,

2010)

l ¼ 5

6
þ 2

kaTð Þ2
; b! 1 or kaT sin h! 0; (45)

which shows that the slope of the beampattern PDF on a log-

log plot varies only with kaT (related to beamwidth) and is

independent of b under these limiting conditions. This equa-

tion was derived under the assumption that the scatterers are

uniformly distributed at approximately constant range within

the mainlobe for polar angles in the range 0 � h � hSL (all

/) (i.e., a 3D case). Note that the power-law form in Eq. (43)

applies to both an intensity-based analysis (Ehrenberg, 1972;

Ehrenberg et al., 1981) and magnitude-based analysis such

as in this tutorial and in Chu and Stanton (2010).

4. Beampattern PDF for entire beam (axisymmetric
transducer, uniformly distributed scatterer)

Once the entire beampattern is accounted for in the echo

statistics, the sidelobes become a significant factor. In this

case, there can be more than one angle at which the beam-

pattern achieves a certain value [Figs. 4(d) and 11]. In this

non-monotonic case, Eq. (17) is now used to calculate the

beampattern PDF,

pb bð Þ ¼
XM

m¼1

ph hmð Þ���� @b

@hm

���� j
hm bð Þ

; 0 � b � 1: (46)

Now, the full range of polar angles is used

[�p=2 � h � p=2 (fixed /) and 0 � h � p=2 (all /) for the

2D and 3D cases, respectively]. The summand of this equa-

tion is the same as Eq. (40) which corresponds to the portion

of the mainlobe above the highest sidelobe level and which
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is a monotonic function. With this summation over m in Eq.

(46), each value of m corresponds to a portion of the beam-

pattern that is monotonic and is associated with the structure

of the mainlobe and sidelobes (Fig. 11).

For a scatterer being uniformly distributed in a hemi-

spherical shell, Eq. (39) is used for its spatial distribution

phðhÞ. For the case of a circular planar transducer, Eqs. (39)

and (41) are inserted into Eq. (46) to obtain the beampattern

PDF for the entire beampattern,

pb bð Þ ¼ 1

4
ffiffiffi
b
p
XM

m¼1

sin2 hm

cos hmjJ2 kaT sin hmð Þj

����
hm bð Þ

;

0 � b � 1; (47)

The summand of this equation is similar to Eq. (42), which

describes the PDF of the portion of the mainlobe above the

highest sidelobe, and differs only by the term in Eq. (42) con-

taining hSL. By setting hSL¼ p=2 in Eq. (42), thus allowing

the polar angle to vary over the entire range 0 � h � p=2 (all

/), Eq. (42) becomes identical to the summand in Eq. (47).

With the sidelobes accounted for in Eq. (47), the beam-

pattern PDF has significant structure involving singularities

(Fig. 12). Each sharp peak in the PDF is associated with the

peak of a sidelobe, while the smoothly varying portion with

a nearly constant slope at the higher values of b is associated

with the portion of the mainlobe above the highest sidelobe

as discussed above. The beampattern PDF is also shown to

vary with beamwidth (i.e., different kaT). The narrower the

beam, the more sidelobes are present, which leads to corre-

spondingly more structure in the PDF. There is also some

similarity in the occurrence of the sharp peaks as beamwidth

is varied.

5. Beampattern PDF for 2D and 3D distribution
of scatterers

For any distribution of scatterers containing at least

most of the main lobe of the beampattern, the beampattern

PDF will generally be qualitatively similar for all distribu-

tions of scatterers. Specifically, the PDF will generally have

a downward trend, such as with the (approximately) power

law illustrated in Figs. 4 and 12. Naturally, there will be

some differences associated with the different distributions.

As shown in Fig. 4, if the scatterers are only in the main lobe

of the beam and do not encounter sidelobes, then the

FIG. 12. Beampattern PDF associated with circular apertures of varying size and/or frequency (i.e., varying kaT, where aT is the radius of the aperture, k
(¼2p/k) is the wavenumber, and k is the wavelength). The width of mainlobe (�3 to �3 dB; defined in Table I) of the composite (two-way) beampattern varies

from 1� to 10� (kaT¼ 132.74, 44.251, 26.556, and 13.291 for the widths of 1�, 3�, 5�, and 10�, respectively). The sharp peaks are associated with singularities

caused by the sidelobes, as indicated in (a). As kaT increases, the number of sidelobes and, hence, singularities, increases. The curves were calculated using

the analytical solution given in Eq. (46), where the numerator and denominator are evaluated separately, using Eqs. (39) and (41), respectively. These calcula-

tions assume the scatterer to be randomly and uniformly distributed in a thin hemispherical shell [as reflected in the use of Eq. (39)]. The software used to pro-

duce this figure is in the supplementary material at https://doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is

subject to future revisions.
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beampattern PDF decreases monotonically with amplitude.

Once the sidelobes are encountered, then there is structure

superimposed on this decreasing trend. Furthermore, the

beampattern PDF will also vary depending upon whether or

not the scatterers reside in a half-plane containing the MRA

or the entire half space (Fig. 13). While the beampattern

PDF is shown to be generally similar between the two cases,

there is a singularity associated with the 2D case at the maxi-

mum value of amplitude.

Beampattern PDFs, such as those illustrated in Fig. 13,

for 2D (half plane) and 3D (half space) distributions of

scatterers at approximately constant range can be predicted

analytically using Eqs. (37) and (39), respectively, with Eq.

(41) used in Eq. (46). However, for the purpose of illustra-

tion and comparison with the analytical predictions in Fig.

12, the curves in Fig. 13 were produced through Monte

Carlo simulations of Eq. (41) in which random draws of h
(fixed /) and (h, /) were made for the 2D and 3D cases,

respectively.

6. Echo PDF for different types of individual scatterers
in axisymmetric beam

The above expressions for the beampattern PDF in Secs.

VII A 2–VII A 4 are now incorporated into the general

expression in Eq. (36) to calculate the effects of the beam-

pattern on the echo PDF. The examples below give a pro-

gression of simple to complex scatterers, located either in

the main lobe of the beam only or anywhere in the entire

beam (including sidelobes).

a. Point scatterer; main lobe only. In the simplest of

cases in which a single point scatterer with a constant scat-

tering amplitude (delta function PDF) is uniformly and ran-

domly distributed in 3D at approximately constant range and

its location is restricted to only the portion of the mainlobe

of the beam that is above the highest sidelobe, the echo PDF

is

peð~eÞ ¼
k0jfpsjl�1~e–l; ~e � jfpsj;
0; ~e > jfpsj

(

ðbSL � b � 1; point scatterer in mainlobe

above highest sidelobeÞ; (48)

where jfpsj is the magnitude of the scattering amplitude of

the point scatterer. The echo PDF was calculated by insert-

ing Eq. (43) for the beampattern PDF and the delta function

d(jfbsj�jfpsj) for the PDF of the scattering amplitude into Eq.

(36a) (where x denotes jfbsj) with the upper limit of the inte-

gral ~e=bSL, reflecting that the integral only involves values of

the beampattern above the highest sidelobe. The inequality

involving b given after Eq. (48) explicitly indicates the range

of b over which the equation applies, which also corresponds

to the range in polar angles, 0 � h � hSL (all /).

This simple example illustrates the significance of the

beampattern in echo statistics. With the simplest case of a

point scatterer with a constant scattering amplitude, the echo

received through the receiver of a directional sensor system

involving the main lobe only is approximately power law
distributed as shown in Eq. (48) [Figs. 4(c) and 12(a)]. As

demonstrated below, the echo PDF is further complicated

once a more complex scatterer and the entire beampattern

(including sidelobes) are used.

b. Rayleigh scatterer; mainlobe only. The above exam-

ple is now extended by replacing the constant-amplitude

scatterer with a Rayleigh scatterer. As before, the scatterer is

randomly and uniformly distributed in 3D at approximately

constant range and its location is restricted to only the por-

tion of the mainlobe above the highest sidelobe. Inserting

Eq. (43) for the beampattern PDF and Eq. (21) for the PDF

of the Rayleigh scatterer into Eq. (36a) with the upper limit

of the integral ~e/bSL so that bSL � b � 1, the echo PDF is

pe ~eð Þ ¼ k0 kR
l�1ð Þ=2 ~e�l

� C
lþ 1

2
;

~e2

kR

 !
� C

lþ 1

2
;

~e2

b2
SLkR

 !2
4

3
5;

bSL � b � 1 Rayleigh scatterer in mainlobeð Þ;
(49)

where C(ag, bg) is the upper incomplete gamma function,

which is related to the gamma function C(agÞ, but calculated

with the lower limit in the integral form of C(agÞ set equal to

bg, rather than 0. Equation (49) is a corrected version of

FIG. 13. Beampattern PDF associated with a circular aperture for 3D and

2D distributions of scatterers. The scatterers are randomly and uniformly

distributed within a thin hemispherical shell (half-space) in the 3D case and

within a thin arc of constant radius in the half-plane containing the MRA of

the beam in the 2D case. The curves were generated through Monte Carlo

simulations (108 realizations) of the two-way beampattern function given in

Eq. (41) with random draws of (h; /) and h (fixed /) for the 3D and 2D

cases, respectively. The width of mainlobe [�3 to �3 dB; as shown in Fig.

4(b) and defined in Table I] of the composite (two-way) beampattern is 3�,
corresponding to a value of kaT¼ 44.2511. The numerically generated curve

for the 3D case in this figure is to be compared with the analytically gener-

ated curve in Fig. 12(c). The software used to produce this figure is in the

supplementary material at https://doi.org/10.1121/1.5052255. The software

is also stored online (Lee and Baik, 2018), where it is subject to future

revisions.
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what appears in Ehrenberg et al. (1981) and has been con-

firmed with simulations over the entire range of echo magni-

tudes (not shown). The inequality involving b given after

Eq. (49) explicitly indicates the range of b over which the

equation applies, which also corresponds to the range in

polar angles, 0 � h � hSL (all /).

c. Complex scatterer; entire beam. The analysis is fur-

ther extended to more complex cases involving a point scat-

terer, Rayleigh scatterer, randomly oriented smooth prolate

spheroid, and randomly oriented rough prolate spheroid,

each randomly and uniformly located (one at a time) in a

half-plane at approximately constant range involving the

entire beam [mainlobe and all sidelobes; �p=2 � h � p=2

(fixed /)] (Fig. 14). For each of those cases, the PDF of the

magnitude of the scattering amplitude ps(jfbsj) using

d(jfbsj�jfpsj), Eq. (21), Eq. (33), and Eq. (35), respectively, is

inserted into Eq. (36a), where x denotes jfbsj. For the case of

using an axisymmetric beampattern due to a circular planar

piston transducer, the beampattern PDF given in Eq. (46) is

used in Eq. (36a) in which the entire beam is accounted for

(0 � b � 1), while using Eq. (41) for the beampattern func-

tion and Eq. (37) for the 2D distribution of scatterers. Also,

the prolate spheroids rotate in the plane and Eq. (34) is used

for their orientation distribution.

As in Sec. VI in which beampattern effects are not

included, predictions using these equations that now incor-

porate beampattern effects show dependence of echo PDF

[and now also PFA through use of Eq. (12)] with type of

scatterer (Fig. 14). However, the beampattern significantly

alters the shape of the echo PDF over the counterpart cases

not involving the beampattern: i.e., the delta function PDF

for a point scatterer, Rayleigh PDF for a Rayleigh scatterer,

and the PDFs associated with a randomized prolate spheroid

as illustrated in Fig. 10. Furthermore, the degree to which

the PDFs deviate from the Rayleigh PDF increases once the

beampattern is included. As with the examples excluding

beampattern effects, the more elongated the scatterers

become, the greater the degree to which the echo PDF is

non-Rayleigh. As with the PDFs, the slope of the tail of all

PFAs depends upon scatterer type. Note that these examples

in Fig. 14 which involve a 2D distribution of scatterers are

qualitatively similar to the corresponding examples involv-

ing 3D distributions in Sec. VII B for the single scatterer

(N¼ 1) cases.

7. Beampattern PDF for non-axisymmetric beampat-
tern, non-uniform distribution of scatterer

The above cases involve the simpler examples in which

the beampattern is axisymmetric and the scatterer is randomly

and uniformly distributed in a half-plane or half-space at

approximately constant range. Those examples apply to many

important scenarios. However, there are also important cases

in which the beampattern may not be axisymmetric (such as a

rectangular transducer or mills cross array) and where the

location of the scatterer is non-uniformly distributed. In this

more general scenario, the beampattern is now a function of

two random variables—h and /. Furthermore, the PDF of the

angular location of the scatterer is now a function of both of

those variables. Below, the beampattern PDF for the most

general case of non-axisymmetric beampattern and non-

uniform distribution of scatterer is first given, which is fol-

lowed by the simplified case of a non-axisymmetric beampat-

tern with a uniformly distributed scatterer.

FIG. 14. (Color online) Distributions of magnitude of echo in backscatter direction received by system (including beampattern effects) for several types of

scatterers. The echo PDFs and PFAs are given in (a) and (b), respectively. The Rayleigh PDF and PFA are superimposed in those plots for comparison. The

beampattern is due to a circular aperture with kaT¼ 44.2511, where the width of mainlobe (�3 to �3 dB; defined in Table I) of the composite (two-way) beam-

pattern is 3�. The scatterers are randomly and uniformly distributed in a thin arc of constant radius in the plane containing the MRA of the beam (i.e., 2D

case). All curves were generated through evaluation of analytical solutions, not Monte Carlo simulations. All calculations involve use of Eq. (36a) and the

beampattern PDF (2D case) calculated with Eq. (46), with Eqs. (41) and (37). In addition, the following equations are used—point scatterer: Using a delta

function for the PDF, ps, of the magnitude of the scattering amplitude, Eq. (36a) reduces to the beampattern PDF; Rayleigh scatterer: ps in Eq. (36a) is the

Rayleigh PDF; smooth prolate spheroid: ps in Eq. (36a) is given by Eq. (33) [using Eq. (34) for the orientation distribution]; and rough prolate spheroid: ps in

Eq. (36a) is given by Eq. (35) [using Eq. (33) for pSS and Eq. (34) for the orientation distribution]. Both types of prolate spheroids (smooth and rough) are ran-

domly and uniformly oriented in a single plane. The axis of rotation is the normal to this plane which contains the sensor system. Aspect ratios of scatterers

are given. The software used to produce this figure is in the supplementary material at https://doi.org/10.1121/1.5052255. The software is also stored online

(Lee and Baik, 2018), where it is subject to future revisions.
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a. Non-uniformly distributed scatterer. For the case in

which the beampattern is non-axisymmetric and the angular

distribution of the scatterer is non-uniform (but at approxi-

mately constant range), the beampattern PDF is a more gen-

eral version of Eq. (46) which now involves an integral over

the azimuthal angle /: Since the beampattern function is a

function of the two random variables, h and /, then Eq. (18)

can be used to derive an expression for the beampattern

PDF. Beginning with Eq. (18), set z¼ b, PZ¼PB (where “B”

is the random variable for the beampattern function b),

x ¼ h ; y ¼ /, and pX;Yðx; yÞ¼ ph;/ðh ;/Þ. Differentiating PB

with respect to h and rearranging terms gives the following

expression for the beampattern PDF (Ehrenberg, 1972):

pb bð Þ ¼
ð2p

0

XM

m¼1

ph;/ hm;/ð Þ 1����@b hm;/ð Þ
@hm

���� j
hm bð Þ

d/;

0� b� 1: (50)

As with the simpler case in Eq. (46), the summation over m
accounts for the fact that the beampattern function is not

monotonic. Each segment within the integrand associated

with a value of m is monotonic. These segments are related

to the regions DZ in Eq. (18) where the function b has the

same value for multiple values of h. This is illustrated specif-

ically for the case of the beampattern function in Fig. 11.

b. Uniformly distributed scatterer. For the simplifying

condition of the scatterer being uniformly distributed in a

half-space at approximately constant range (with a non-

axisymmetric beampattern), Eq. (38) is used for the PDF of

the angular location of the scatterer and Eq. (50) reduces to

pb bð Þ ¼ 1

2p

ð2p

0

XM

m¼1

sin hm���� @b hm;/ð Þ
@hm

���� j
hm bð Þ

d/; 0 � b � 1;

(51)
where the integral over / reflects the asymmetry in the

beampattern. Once the beampattern becomes axisymmetric,

this equation further reduces to Eq. (46) [with Eq. (39) used

for phðhÞ in Eq. (46)] in which there is no dependence upon

/ in the beampattern.

Given the complexity associated with the asymmetry of

the sensor beam, both of the above two equations must gen-

erally be evaluated numerically. Equation (51) has been

evaluated to predict the echo statistics associated with a rect-

angular transducer in which the one-way beamwidths in the

two orthogonal planes were 5� and 20� (Stanton et al.,
2015). The beampattern PDF of the two-way beampattern,

as illustrated in Fig. 2 in that paper, is qualitatively similar to

the ones illustrated in this tutorial in that the PDF trends

toward smaller values as the beampattern value increases.

However, the structure in the beampattern PDF associated

with the rectangular transducer is much different than that

associated with the circular transducer in this tutorial

because of the lack of axial symmetry in the beampattern.

Specifically, the sharp spikes shown in Fig. 12(a) of this

tutorial that are associated with the sidelobes for a circular

transducer are much larger in magnitude, but fewer in num-

ber, than the corresponding spikes in the beampattern PDF

associated with the rectangular transducer. The beampattern

PDF for the rectangular transducer was used in Stanton et al.
(2015) in interpreting experimental data, as summarized in

Sec. III A 1 of this tutorial.

B. Multiple identical scatterers randomly located in
beam

In this case, there are two or more scatterers present at

the same time, each randomly, uniformly, and independently

distributed in the beam at approximately constant range. The

transmit signals are long enough so that the echoes from all

scatterers are assumed to completely overlap. The scatterers

are “identical” in that they possess the same statistical prop-

erties. For example, the magnitude of the scattering ampli-

tude of each scatterer could be Rayleigh distributed with the

same mean scattering cross section. Or, each scatterer could

be a randomly rough, randomly oriented prolate spheroid

with the same mean dimensions (and, hence, the same mean

scattering cross section). Although the statistical properties

are the same, the scattering amplitudes of the scatterers are

generally different from each other for any given ping or

realization since they are statistically independent of each

other.

As discussed in Sec. IV C 5, there are various methods

to calculate the echo statistics in this case in which the sum

of multiple random variables (i.e., echoes from multiple

scatterers) is calculated. The methods range from closed-

form analytical to pure numerical approaches involving

Monte Carlo simulations of summations of phasors. Because

of its generality, the latter case is used in the below analysis.

In this simple “phasor summation” method, Eq. (6) is

used in which a phasor (the summand) is calculated for each

scatterer and each realization. For each realization, the pha-

sors are added together coherently to form the total echo as

measured by the sensor system. The echo PDF is estimated

through forming a histogram of the total echo magnitude

through the binning method or using the kernel density esti-

mation (KDE) method described in Sec. IV B 2. The phase

shift term Di varies randomly and uniformly in the range [0

2p], reflecting the random location of the scatterers (range-

wise) and high frequencies (short wavelengths) of the sig-

nal. All scatterers are distributed within a thin hemispheri-

cal shell so that there are no significant differences in the

range-dependence of the losses due to spreading and

absorption. The magnitude of the echo from each individual

scatterer is given by Eq. (7). As discussed above, since the

scattering amplitude and location of the scatterer in the

beam are random variables (leading to the beampattern

function being a random variable), then this individual

echo magnitude is a random variable as well.

Three sets of examples are investigated using three scat-

terer types from above—a point scatterer, Rayleigh scatterer,

and randomly oriented rough prolate spheroid. For each pha-

sor, the randomized terms (scattering amplitude, beampat-

tern function, and phase) are randomly drawn from
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numerically generated statistical distributions. For the point

scatterer, the magnitude of the scattering amplitude is simply

a constant in Eq. (7). For the other two scatterers, the magni-

tude of the scattering amplitude is determined using random

draws from numerically generated random variables. The

magnitude of the scattering amplitude of the Rayleigh scat-

terer for each realization was randomly drawn from a numer-

ically generated Rayleigh random variable [whose PDF is

given in Eq. (21)]. Generating the magnitude of the scatter-

ing amplitude of the randomly oriented rough prolate spher-

oid began by randomly drawing an orientation angle b,

which was then used to calculate the magnitude of the scat-

tering amplitude of the smooth prolate spheroid from Eq.

(30). That value, in turn, was multiplied by a Rayleigh dis-

tributed random variable (which was randomly drawn using

the same method as for the Rayleigh scatterer). Note that the

prolate spheroid calculations could have used Eq. (35)

directly to describe the statistics of the random variable scat-

tering amplitude, from which a random draw could have

been made. However, for the purposes of illustration, the

scattering was described from the beginning (random draw

of orientation angle), which would be the process used for a

more general scatterer for which there is not a closed-form

solution.

For each realization, the (axisymmetric) beampattern is

calculated for a random location (polar angle h) with the

scatterer angular (location) distribution PDF of sin h from

Eq. (39), and the phase shift is sampled from a uniform dis-

tribution [0 2p]. Also, for each realization, each of the above

random variables is generated by employing inverse trans-

form sampling, in which samples of any probability distribu-

tion is generated at random through its CDF (Devroye,

FIG. 15. (Color online) Distributions of magnitude of echo in backscatter direction from N point scatterers randomly and uniformly distributed in a thin hemi-

spherical shell. (a) PDF of echo with no beampattern effects (equivalent to having an omnidirectional beam), (b) PDF of echo with beampattern effects, and

(c) PFA of echo with beampattern effects. Each scatterer is identical with a scattering amplitude that is constant. Except for the N¼ 1 case, the curves in (a)

are generated with Monte Carlo simulations using the same equations and parameters to generate Fig. 6(b), but with 108 realizations for this figure. The N¼ 1

curve is also added to (a) (no simulations), which is the delta function. Monte Carlo simulations (108 realizations) of Eq. (6) are used in (b) and (c). The beam-

pattern is due to a circular aperture with kaT¼ 44.2511, where the width of mainlobe (�3 to �3 dB; defined in Table I) of the composite (two-way) beampat-

tern is 3�. The value given in parentheses after the value of N in the legend of (b) and (c) is the number of scatterers within the main lobe of the beam, as

discussed in Table I. The Rayleigh PDF and PFA are superimposed in those plots for comparison. The software used to produce this figure is in the supplemen-

tary material at https://doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.

FIG. 16. (Color online) Distributions of magnitude of echo in backscatter direction from N identical Rayleigh scatterers randomly and uniformly distributed in

a thin hemispherical shell. The PDFs and PFAs are given in (a) and (b), respectively. For the case in which there are no beampattern effects (i.e., b¼ 1), the

echo magnitude PDF is Rayleigh for all N (not shown). Monte Carlo simulations (107 realizations) are used in each case using Eq. (6), where the scattering

amplitude for each scatterer is Rayleigh distributed and with the same mean. The beampattern is due to a circular aperture with kaT¼ 44.2511, where the width

of mainlobe (�3 to �3 dB; defined in Table I) of the composite (two-way) beampattern is 3�. The value given in parentheses after the value of N in the legend

is the number of scatterers within the main lobe of the beam, as discussed in Table I. The software used to produce this figure is in the supplementary material

at https://doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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1986). Using these terms, the summand in Eq. (6) is calcu-

lated and summed over the N scatterers for each realization.

The process is repeated for millions of realizations (typically

107) and a histogram is formed representing the statistics of

the magnitude of the echo as received by the sensor system.

In each example, the echo PDFs are shown to vary sig-

nificantly with type and number of scatterers (Figs. 15–17).

As with the case of a single scatterer in the beam, the PDF is

significantly different than when beampattern effects are not

accounted for. As expected, as the number of scatterers

increases, the PDFs approach the Rayleigh PDF. In general,

for a small number of scatterers, the echo PDF deviates sig-

nificantly from the Rayleigh PDF, both in the small and large

echo magnitude regions of the PDF. Echo PFAs are also

illustrated, which also show significant dependences upon

type and number of scatterer. The degree to which the PDF

deviates from a Rayleigh PDF also varies with beamwidth

(Fig. 18). For a fixed number of scatterers, the narrower the

beam, the greater the deviation from a Rayleigh PDF. Note

that the “noisy” characteristic in portions of some of the

plots of PDF in Figs. 15–18 is due to the relatively low num-

ber of realizations in the Monte Carlo simulations that were

FIG. 17. (Color online) Distributions of magnitude of echo in backscatter direction from N randomly rough, randomly oriented prolate spheroids randomly

and uniformly distributed in a thin hemispherical shell. (a) PDF of echo with no beampattern effects (i.e., omnidirectional beam); (b) PDF of echo with beam-

pattern effects; (c) PFA of echo with beampattern effects. This geometry is fully 3D as the spheroids are distributed within the hemispherical shell and the

spheroid orientation varies randomly and uniformly in two planes of rotation of the spheroid. This is in contrast to Fig. 14 where the spheroid orientation fol-

lows a 2D distribution (spheroid distributed within thin arc and rotating in only one plane of rotation). The scatterers are identical in size and shape (10:1

aspect ratio), although statistically independent of each other. Monte Carlo simulations (107 realizations) are used in each case using Eq. (6), where the scatter-

ing amplitude for each scatterer is the product of Eq. (30) (smooth spheroid) and a Rayleigh distributed random variable (to simulate roughness effects). The

beampattern is due to a circular aperture with kaT¼ 44.2511, where the width of mainlobe (�3 to �3 dB; defined in Table I) of the composite (two-way) beam-

pattern is 3�. The beampattern b in Eq. (7) is set equal to unity in (a). The value given in parentheses after the value of N in the legend in (b) and (c) is the num-

ber of scatterers within the main lobe of the beam, as discussed in Table I. The software used to produce this figure is in the supplementary material at https://

doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.

FIG. 18. (Color online) PDF of magnitude of echo from 100 identical

Rayleigh scatterers that are randomly and uniformly distributed in thin

hemispherical shell. The beamwidth (�3 to �3 dB; defined in Table I) of

the composite (two-way) beampattern is varied from 1� to 20�. The beam-

pattern is due to a circular aperture. Monte Carlo simulations (107 realiza-

tions) are used in each case using Eq. (6), where the scattering amplitude

for each scatterer is Rayleigh distributed and with the same mean. The

numbers of scatterers within the main lobe for the different directional

beams are given in parentheses next to the corresponding beamwidth in

the legend. Those numbers, as well as the respective values of kaT, are

summarized in Table I. The software used to produce this figure is in the

supplementary material at https://doi.org/10.1121/1.5052255. The soft-

ware is also stored online (Lee and Baik, 2018), where it is subject to

future revisions.

TABLE I. Average number of scatterers within the entire main lobe of a cir-

cular transducer (i.e., within solid angle defined by the first null of the beam-

pattern) for various beamwidths and various total number of scatterers, N, in

the half space. The beampattern b (¼ bTbr) is the composite two-way beam-

pattern determined by the product of the transmit (bT) and receive (br) beam-

pattern as given in Eq. (41). The beamwidth (2h0) is the full width of the

beampattern between the �3 dB (half-power) points where b(h0)¼ 1/
ffiffiffi
2
p

.

The parameters in this table correspond to various figures within this paper.

Beamwidth

(�3 to �3 dB) (deg.) kaT N (half space)

Average number

within mainlobe

1 132.74 100 0.0417

3 44.2511 1 0.00375

3 44.2511 10 0.0375

3 44.2511 25 0.0937

3 44.2511 100 0.375

3 44.2511 250 0.937

3 44.2511 1000 3.75

3 44.2511 2500 9.37

10 13.2907 100 4.13

20 6.6707 100 16.0
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within those particular log-spaced magnitude bins (i.e., when

both pe and ~e=h~e2i1=2
are low).

It is important to emphasize that the number of scatter-

ers N is distributed uniformly in a thin hemispherical shell in

a half-space. For a narrow beamwidth, the mainlobe occu-

pies just a small fraction of that half-space. Since the main-

lobe weights the echoes from the individual scatterers much

more than the sidelobes, the scatterers within the mainlobe

will generally contribute the most to the signal. In essence,

the signal will be dominated by the effective number of scat-

terers—those that are within the mainlobe. The average

number of scatterers within the mainlobe is indicated in

parentheses after the value of N in the legends to these and

later figures and are also given in Table I.

The echo statistics vary with beamwidth even though N is

constant because the effective number of scatterers varies with

beamwidth—that is, for fixed N, the number of scatterers

within the mainlobe that contributes to the higher values of the

scattering decreases with decreasing beamwidth (Fig. 18). For

example, for N¼ 100, the number of scatterers within a 1�-
wide mainlobe is, on average, equal to 0.0417 (Table I). Before

beampattern effects are included, the sum of 100 independent,

random phase signals would be very close to Rayleigh distrib-

uted (Fig. 6). However, with such a narrow beam with only a

small fraction of the 100 scatterers within the mainlobe, the

resultant echo PDF will be strongly non-Rayleigh.

C. Multiple scatterers of different types and sizes

Once there is more than one type or size of scatterer present,

the echo PDF will not only depend upon the type and number of

scatterers, and sensor beamwidth, as in the above examples in

Sec. VII B which involved one type of scatterer at a time, but

will also depend upon the variability of values of mean scattering

cross section and variability of numbers of scatterers across the

different types of scatterers. Furthermore, the echo PDF will

depend upon the differences in spatial distributions of the differ-

ent types of scatterers. For example, consider two distinct cases:

(1) a split aggregation in which scatterers of only one type reside

in “monotype” patches and each echo contains contributions

from only one type of scatterer and (2) an interspersed aggrega-
tion in which the different types of scatterers are uniformly

interspersed with each other so that each echo contains contribu-

tions from all of the types of scatterers (Fig. 19). In each case,

the beam is much narrower than both the patch and analysis win-

dow containing the scatterers and the echoes from many pings

or independent realizations are observed within each window

(Fig. 19). The echo statistics will generally be significantly dif-

ferent for the two distributions, even when the same set of scat-

terers of varying types are involved in each distribution (Lee and

Stanton, 2014). And, for each type of distribution, the echo PDF

will vary as the number and mean scattering cross section of

each scatterer type are varied.

Below, the echo PDF is formulated for each type of spa-

tial distribution—first for cases involving two types of scat-

terers, then generalizing to an arbitrary number of scatterer

types. For the split aggregation, a mixture PDF (to be defined

below) involving separate phasor summations for the mono-

type patches is used and, for the interspersed aggregation,

the phasor summation method is used to form the echo PDF

from the echoes from all types of scatterers within the analy-

sis window. Examples of echo PDFs from each type of dis-

tribution are given in Sec. VII C 3 for the simple case

involving two different sizes of scatterers, “weak” (type A)

and “strong” (type B), for a range of numbers and sizes of

scatterers. Both types of scatterers are Rayleigh scatterers,

but with different mean scattering cross sections.

1. Split aggregation of type A and B
scatterers—mixture PDF

Formulating the echo PDF for the split aggregation geom-

etry [Fig. 19(a)] for two types of scatterers is intuitive and is

done in two steps. First, the echo PDF is determined for each

homogeneous patch of identical scatterers—the type A and

type B patches. As discussed in Secs. IV C 5 and VII B, the

PDF can be determined for each patch using a variety of meth-

ods, including the phasor summation method which uses Eqs.

(6) and (7) for each patch separately. The patches are analyzed

separately since the echoes from the different types of scatter-

ers do not overlap in this case. Since the echo PDF from the

sensor system scanning all scatterers is based on echoes accu-

mulated from both patches, the echo PDF from the analysis

window is simply the weighted sum of the PDFs from the two

patches, which is known as a two-component “mixture” PDF,

peð~eÞ ¼ wApðAÞe ð~eÞ þ wBpðBÞe ð~eÞ
ðmixture PDF; split aggregationÞ: (52)

Here, the weighting factors wA and wB represent the frac-

tional volume occupied by the type A and type B scatterers,

respectively. For example, if the patch of type A scatterers

occupies 60% of the analysis window and the patch of type

B scatterer occupies 40% of the window, then wA¼ 0.6 and

wB¼ 0.4. Since, by definition, the two patches collectively

occupy 100% of the analysis window, then wAþwB¼ 1 and

Eq. (52) can be simplified,

peð~eÞ ¼ wApðAÞe ð~eÞ þ ð1� wAÞpðBÞe ð~eÞ
ðmixture PDF; split aggregationÞ: (53)

FIG. 19. Analysis windows involving two different spatial arrangements for

aggregations composed of more than one type of scatterer. (a) Split aggregation

where scatterers of different types are separated into their own sub-regions. (b)

Interspersed aggregation where scatterers of different types are uniformly inter-

spersed throughout the window. In each case, the resolution cell of the sensor

system is much smaller than the analysis window and, in case (a), it is also

much smaller than each sub-region. From Lee and Stanton (2014).
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2. Interspersed aggregation of type A and B
scatterers—coherent phasor sum

In contrast to the above case of a split aggregation, the

echoes from the two types of scatterers in the interspersed

aggregation overlap with each other [Fig. 19(b)]. Predictions

of the echo PDF in this geometry therefore begins with a

coherent phasor summation involving both types of scatter-

ers. Calculating the echo statistics using the phasor sum

method is done the same way as described in Sec. VII B, but

by first rewriting Eqs. (6) and (7),

~e ¼
����XN

i¼1

~eiAejDiA þ
XM

i¼1

~eiBejDiB

����
ðphasor summation; interspersed aggregationÞ:

(54)

where the magnitude of the echo voltage from the ith scat-

terer of the kth type as received through the sensor system is

~eik ¼ jf ðikÞbs jbðhik; /ikÞ (55)

and Dik and ðhik; /ikÞ are the phase and angular locations of the

ith scatterer of the kth type, respectively. There are N and M
type A and B scatterers, respectively. The term k corresponds to

type A or type B scatterer in this example. Once ~e is calculated

from Eq. (54) for many realizations, the echo PDF is formed.

3. Comparisons between echo PDFs from split and
interspersed two-type aggregations

Echo PDFs are calculated using Monte Carlo simulations

of Eq. (6) as described above for a range of parameters for

both the split and interspersed aggregations involving two

types of scatterers. Both types of scatterers are Rayleigh scat-

terers, but with two different mean scattering cross sections

denoted by “weak” (smaller mean scattering cross section)

and “strong” (larger mean scattering cross section). The dif-

ference of average scattering levels could be achieved through

either a difference in boundary conditions (a weak scatterer

with small contrast in material properties relative to surround-

ing medium and a strong scatterer with large contrast) or a

difference in size (a weak scatterer being smaller than a strong

scatterer). The ratio of rms magnitude of the scattering ampli-

tudes of the strong (“S”) to weak (“W”) scatterers is given by

rSW ¼
kS

kW
; (56)

where k is the rms magnitude of the scattering amplitude of

the denoted scatterer type [this notation is chosen to be con-

sistent with that of Lee and Stanton (2014) and is not to be

confused with kR of Eqs. (21)–(23) of this tutorial].

With the number of weak scatterers fixed at 2500, the num-

ber of strong scatterers is varied over the range 25–2500 for two

values of rSW (5 and 20). The resultant echo PDFs are shown to

vary in shape over all combinations of these parameters (Figs.

20 and 21). All PDFs deviate significantly from the Rayleigh

PDF. In each example, the tail of the PDF is elevated above the

Rayleigh PDF. The degree to which the tail is elevated is espe-

cially pronounced for the larger ratio of strong-to-weak scatter-

ing amplitude (rSW ¼ 20) in both types of aggregations and for

the cases involving fewer numbers of strong scatterers in the

interspersed aggregations. This is consistent with the intuition

that the strong scatterers dominate the echo and can cause the

echo to be non-Rayleigh when they are small in number. Also,

very importantly, the PDFs with the same parameters, but differ-

ent spatial distribution (split- and interspersed aggregation), are

significantly different from each other. Note that, as with some

of the previous simulations, the “noisy” characteristic in portions

of some of the plots of PDF in Figs. 20 and 21 are due to the rel-

atively low number of realizations in the Monte Carlo simula-

tions that were within those particular log-spaced magnitude

bins (i.e., when both pe and ~e=h~e2i1=2
are low).

With the many model parameters in these formulations, it is

relatively easy to obtain a good fit to experimental data, even

when using the “wrong” theoretical PDF (“wrong” in that the

assumptions in the derivation of the theoretical PDF do not

match the physical scenario). This was explored in Lee and

Stanton (2014) where echoes from both split- and interspersed

aggregations were simulated numerically. While allowing all

parameters to vary freely, theoretical PDFs for each type of

aggregation were then “fit” to simulations from both the corre-

sponding appropriate aggregation and the other aggregation.

Excellent fits were obtained in most cases (i.e., for both the

“right” and “wrong” aggregations). For example, a mixture

model could not only be successfully fit to echoes from a split

aggregation (for which the mixture model is derived), but also

could be “successfully” fit to an interspersed aggregation (which

it was not derived for). However, when the theoretical PDF was

fit to the wrong aggregation, the inferred parameters (that is, the

ones required to obtain a good fit) were up to an order of magni-

tude in error [see Table I and Figs. 6 and 7 of Lee and Stanton

(2014)]. The conclusion was that for accurate inference of model

parameters from data, it is essential to model the spatial distribu-

tion of the scatterers appropriately, taking into account whether

or not they are split or interspersed.

4. Many types of scatterers (general formulations)

The above simple cases involving two types of scatter-

ers can easily be extended to the general case of K types of

scatterers (where K is an integer, not to be confused with the

K PDF). For the case in which each type of scatterer is parti-

tioned separately in its own patch within the analysis win-

dow, the echo PDF from the entire analysis window is

calculated using the following K-component mixture PDF:

peð~eÞ ¼
XK

k¼1

wkpðkÞe ð~eÞ

ðmixture PDF; K types partitionedÞ: (57)

where pðkÞe ð~eÞ is the echo PDF of the patch associated with

the kth type of scatterer, wk is the weighting factor for the

kth patch, and
PK

k¼1 wk ¼ 1.

For the case in which all types of scatterers are ran-

domly and uniformly interspersed within the analysis win-

dow, the phasor sum for a single realization of echo is
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~e ¼
����XK

k¼1

XNðkÞ
i¼1

~eikejDik

����
ðphasor summation; K types interspersedÞ; (58)

where ~eik is given in Eq. (55) and N(k) is the number of scat-

terers of the kth type. The echo is calculated for a large

ensemble of independent realizations to form the echo PDF

of the analysis window for the interspersed aggregation.

FIG. 20. (Color online) PDF of echo magnitude from multiple Rayleigh scatterers in a split aggregation in which the larger scatterers are separated from the

smaller scatterers as illustrated in Fig. 19(a). The arrow in the lower right panel indicates an inflection in the PDF associated with having two types of scatter-

ers. The beampattern is due to a circular aperture with kaT¼ 44.2511, where the width of mainlobe (�3 to �3 dB; defined in Table I) of the composite (two-

way) beampattern is 3�. The number of strong and weak scatterers, NS and NW, respectively, randomly and uniformly distributed in a thin hemispherical shell

are given. Monte Carlo simulations (107 realizations) are used in each case using Eq. (6), where the scattering amplitude for each scatterer is Rayleigh distrib-

uted, but with different means, as indicated by the value of rSW. The volume within which the strong scatterers occupy is 5% of the total volume (that is,

wA¼ 0.05 in Eq. (53), where “A” and “B” denote the patches of strong and weak scatterers, respectively). The value given in parentheses after each value of

NS and NW is the corresponding number of strong and weak scatterers within the main lobe of the beam, as discussed in Table I. The software used to produce

this figure is in the supplementary material at https://doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to

future revisions.
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Finally, the above two equations can be used in concert to

describe more complex cases such as when multiple patches of

both monotype and interspersed aggregations are present.

VIII. SYSTEMS AND ENVIRONMENTS WITH MORE
COMPLEXITY

All of the above involved relatively simple scenarios—

single-frequency signals that are long enough so that echoes

from all scatterers completely overlapped and direct path

geometries in which the medium is homogeneous and there

is no interference from neighboring boundaries. While the

results from these scenarios sufficiently approximate a wide

range of applications, there are factors in other applications

that sometimes must be accounted for in accurately predict-

ing echo statistics. For example, signals in sensor systems

are generally pulsed and the environments may be

FIG. 21. (Color online) PDF of echo magnitude from multiple Rayleigh scatterers in an interspersed aggregation in which both the larger and smaller scatter-

ers are uniformly and randomly interspersed throughout the analysis window as illustrated in Fig. 19(b). The inflections in these PDFs are less pronounced in

this type of aggregation than in the split aggregations as noted by the arrow in Fig. 20. As with Fig. 20, Monte Carlo simulations (107 realizations) are used in

each case using Eq. (6), where the scattering amplitude for each scatterer is Rayleigh distributed, but with different means, as indicated by the value of rSW.

All modeling parameters are the same as in Fig. 20 (except for wA, which is specific to a split aggregation) and are described in the caption to that figure. Each

type of scatterer occupies 100% of the volume with this case of interspersed aggregations. The software used to produce this figure is in the supplementary

material at https://doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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heterogeneous and have boundaries. When pulsed signals

are used, echoes from individual scatterers will generally

partially overlap, or not overlap at all. The presence of a sin-

gle boundary near a scatterer will be an added source of

interference, and the presence of two parallel boundaries

and/or heterogeneities will not only cause more interference,

but also possibly waveguide effects.

The effects from these realistic conditions are described

below as well as recommendations for physics-based predic-

tions of the echo statistics.

A. Pulsed signals (partially overlapping echoes)

Once the signals are pulsed instead of continuous wave, the

echoes from individual scatterers in an aggregation may only

partially overlap or not overlap at all which can significantly

affect the echo statistics (Figs. 22 and 23). This effect, in

essence, translates to fewer effective scatterers in the main-

lobe of the beam, which will tend to make the statistics of

the pulsed signal more non-Rayleigh. Generally, the shorter

the signal, the fewer the effective scatterers and, hence, the

more non-Rayleigh the echo becomes. The signal can be

shortened either by reducing the gate duration of the signal,

or by increasing the bandwidth of the signal and applying

matched filter processing as described below.

The bandwidth of a pulsed signal emitted by a system is

inherently finite (i.e., non-zero bandwidth). The bandwidth

can be exploited to further reduce the signal duration through

signal processing such as matched filter processing where

the received echo is cross correlated with a replica signal

such as the transmitter waveform. This processing, which is

sometimes referred to as “pulse-compression” processing,

can shorten the duration of the processed echo down to the

FIG. 22. Modeling considerations and processing flow for echo statistics

associated with pulsed broadband signals. (a) Beamwidth that varies with

frequency within a broadband signal is illustrated as well as partially over-

lapping echoes due to short signal. (b) Flow diagram illustrating system

effects incorporated into echo statistics model. The echo time series shown

in the right of (a) and (b) is the envelope of the pulse-compressed signal

from match filter processing, which greatly increases temporal (range) reso-

lution and increases the probability that the echoes will only partially over-

lap. The circled “*” and “�” symbols represent the convolution and cross

correlation operations, respectively. From Lee and Stanton (2015), where

terms in the illustration specific to that paper, are described.

FIG. 23. (Color online) Comparisons between the PDFs of the echo magnitudes associated with long narrowband and short pulsed broadband signals with three

cases of multiple scatterers. The broadband signal has an octave bandwidth centered about the frequency of the narrowband signal. The spectrum of the broad-

band signal has a constant value within the band and is equal to zero outside the band. The N Rayleigh scatterers are identical with the same mean and are ran-

domly and uniformly distributed in a thin hemispherical shell. The narrowband signals are long enough so that the echoes completely overlap while, in contrast,

there is generally only partial overlap between the echoes from the short broadband signals. The echo from the broadband signal is temporally compressed

through matched filter processing so that its duration is approximately equal to the inverse of the bandwidth of the signal. Predictions for both the narrowband

and broadband cases involve Monte Carlo simulations (106 realizations) in the time domain as illustrated in Fig. 22 and given in detail in Lee and Stanton (2015).

In the simulations, the scattering amplitude of each scatterer (via Rayleigh PDF), time of return, and location in the beampattern are randomized. The beampattern

is due to a circular aperture with kaT¼ 44.2511 at the narrowband frequency and the center frequency of the broadband signal. The width of the mainlobe (�3 to

�3 dB; defined in Table I) of the composite (two-way) beampattern is 3.0� for kaT¼ 44.2511. The value given in parentheses after the value of N is the number

of scatterers within the main lobe of the 3.0� beam, as discussed in Table I. The width of the main lobe across all frequencies of the broadband signal varies from

2.1� to 4.2�. Note that these curves are qualitatively similar to the octave-band simulations in Fig. 3(b) of Lee and Stanton (2015) where the spectrum of the

broadband signal is non-uniform due to the non-uniform transducer response. The software used to produce this figure is in the supplementary material at https://

doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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limit of the inverse bandwidth (Turin, 1960). In the common

case in which the transmitter waveform is used as a replica,

the cross-correlation between that signal and the echo (which

contains the response of the system and scatterer) normally

deviates from the autocorrelation function of the replica and

that theoretical limit is never fully achieved. Either way,

whether an ideal or practical waveform is used as a replica,

generally the broader the bandwidth, the shorter the proc-

essed echo and, correspondingly, the finer the along-range

resolution of the system becomes.

Because of the improvement in resolution of the com-

pressed pulse, there will generally be even fewer scatterers in

an aggregation contributing to a given (processed) echo than

in the original pulsed signal which, in turn, can further

increase the degree to which the echo is non-Rayleigh. This

effect is particularly relevant to operational systems, as band-

width is commonly increased in order to improve image reso-

lution and signal-to-noise ratio (Gillman, 1997; Abraham and

Lyons, 2002a,b; and Lee and Stanton, 2015).

Predicting the echo PDF for pulsed systems is complex.

Generally, the system response is nonuniform across the fre-

quency band, the transmitted signal is shaped in time and

further modulated by the system response, and the echoes

from the individual scatterers will only partially overlap, if

at all. And, as indicated above, the broader the bandwidth,

the less the echoes from the scatterers will overlap after

pulse-compression processing, adding to the challenge of

modeling the echo PDF.

Because of the complexity, treating the problem

through a numerical, rather than analytical, approach may

be best. In a recent study by Lee and Stanton (2015), a

broadband pulsed system was simulated (Fig. 22).

Parameters of the simulations were based on a known com-

mercial system. The bandwidth of the system was roughly

one octave (i.e., the upper frequency was approximately

twice the lower frequency) and the system response was

nonuniform (varying by more than 10 dB across the band).

The transmission signal was linear frequency modulated (a

“chirp”) across the band and the echoes were processed

with matched filter processing, using the signal applied to

the transmitter transducer as the replica. Key to the simula-

tions was numerically convolving the applied signal with

the system response (including frequency dependence of

transducer and frequency dependence of beampattern), con-

volving the resultant outgoing signal with the scatterer

response, and delaying the echo from each randomized scat-

terer by a time that was randomized. The envelope of the

matched filtered echo was sampled in the middle of the sam-

ple window (Fig. 22). The envelope was calculated using a

Hilbert transform. The results of those simulations are illus-

trated in Figs. 2–5 of Lee and Stanton (2015) where direct

comparisons are made between narrowband and broadband

effects (Rayleigh scatterers), Rayleigh scatterers and ran-

domly oriented rough prolate spheroids (broadband), and

monotype and mixed assemblages of different types of scat-

terers (broadband).

In this tutorial, some of the simulations in Lee and

Stanton (2015) are reproduced, but with the simplification of

replacing the signal and system response that was specific to

a particular commercial system with a simple octave-

bandwidth signal whose spectrum is uniform over the band.

A different set of number of scatterers is also used. The echo

PDFs illustrated in Fig. 23 of this tutorial are qualitatively

similar to those predicted in Fig. 3(b) in Lee and Stanton

(2015). Note that, as with some of the previous simulations,

the “noisy” characteristic in portions of some of the plots of

PDF in this figure are due to the relatively low number of

realizations in the Monte Carlo simulations that were within

those particular log-spaced magnitude bins (i.e., when both

pe and ~e=h~e2i1=2
are low).

The results of both sets of simulations in Lee and

Stanton (2015) and this tutorial show that for any given set of

parameters, the echo PDF of the broadband pulsed signal

(after pulse-compression processing) deviates much more

from the Rayleigh PDF than the corresponding PDF associ-

ated with a long single-frequency signal whose frequency is

at the center of the spectrum of the broadband signal. This

increase in the non-Rayleigh nature of the pulsed signal is

due to the fact that the echoes are generally only partially

overlapping or not overlapping, which reduces the number of

effective scatterers whose echoes interfere with each other.

It is important to note that the echo was sampled in both

sets of simulations at a single fixed point since this is an

analysis involving first-order statistics, which is the focus of

this tutorial. The analysis presented in this tutorial for Fig.

23 maintains generality and is not specific to any particular

system or signal processing algorithm. For systems that

involve a sampling method more advanced than sampling a

single point, such as sampling a peak value within a sample

window, the results in this tutorial can serve as a basis for

modeling those methods, as discussed in Sec. V B.

B. Object near a rough boundary

When the scatterer of interest is close enough to a

boundary so that echoes from the object overlap with echoes

from the boundary, there will be interference between the

two sets of echoes. In addition, there will be signals (and

associated interference) involving secondary or “rescattered”

FIG. 24. Object near a rough boundary. The direction of propagation of the

incident signal is at a shallow grazing angle relative to the boundary.

Primary (1) and secondary (2) echoes are illustrated.
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echoes following paths such as transmitter-boundary-scat-

terer-receiver and transmitter-scatterer-boundary-receiver

(Fig. 24) (Williams et al., 2010). Although some of the sig-

nal energy may be refracted into the boundary (for a penetra-

ble boundary), these secondary echoes can be of comparable

magnitude as the primary echoes that are directly from the

scatterer. Accounting for these effects is specific to the par-

ticular geometry. One simple model is given below involv-

ing a single scatterer near a rough boundary with more

complex solutions discussed.

The below treatment describes a simple model of the

scattering involving use of rays. The statistics can be mod-

eled by using an approximate ray-based method in which

components of the echo are rays either involving scattering

by the object (including object-boundary interaction) or by

the boundary alone (not involving the object). The ray-based

method is very intuitive and can lead to reasonable results over

a wide range of important conditions. However, in general, the

scattering in this complex geometry must be treated formally

through various approaches involving solutions to the wave

equation (Lim et al., 2000; Zampolli et al., 2008; Williams

et al., 2010). In those cases, the statistics can be formed

through Monte Carlo simulations of the formal solutions.

One important geometry involves shallow grazing angles

in which the incident signal is propagating in a direction

nearly parallel to a rough boundary and the echo from the

scatterer is comparable to or greater than that of the backscat-

tered echo from the rough boundary (Fig. 24). The echo

involving the object is the “signal” echo (i.e., echo of interest)

and the boundary-alone echo is the “background” or noise-

like echo. The magnitude of the total echo involves the coher-

ent sum of the echoes from both the object and boundary,

~e ¼
����XN

i¼1

~eie
jDi þ BejD

����; (59)

where N is the number of rays that either involve a direct

echo from the object or an echo involving interaction

between the object and boundary. The terms ~ei and Di are

the magnitude and phase shift, respectively, of the ith ray

associated with the object. The terms B and D are the magni-

tude and phase shift, respectively, of the echo from the

boundary only. Both ~ei and B depend upon the beampattern.

The term ~ei is given by Eq. (7) (except that it represents the

ith ray rather than the ith scatterer). The term B involves an

integral of the beampattern, at constant range, over the

boundary (Ogilvy, 1991).

All four of the terms in the right side of Eq. (59) are ran-

dom variables. Since B is associated with diffuse scattering by

the rough boundary, it is commonly assumed to be Rayleigh

distributed. However, there is no restriction on its distribution

and it could be, for example, K-distributed (Ferrara et al.,
2011) or one that is derived based on the scattering physics.

For the very simple case of a point scatterer near a rough

boundary, an omnidirectional beam, no significant interac-

tions between the scatterer and boundary (N¼ 1), and a

Rayleigh distributed echo from the boundary, the statistics

of the echo magnitude in Eq. (59) can be described by the

Rice PDF given in Eq. (26). The generalized K PDF, which

is conceptually similar to the Rice in that it involves a ran-

dom signal with a preferred phase (such as due to the single

scatterer in the presence of background reverberation), may

also be used to approximate the echo statistics (Sec. VI A 3)

(Jakeman and Tough, 1987; Ferrara et al., 2011). For exam-

ple, the generalized K PDF has been successfully used in an

experimental study by Ferrara et al. (2011) to describe the

statistics of radar echoes from ships and oil rigs on the sea

surface (summary of their work in Sec. III A 2).

Beyond those simple scenarios with a closed-form solu-

tion such as the Rice and generalized K PDFs, the PDF of the

magnitude of the echo in Eq. (59) generally must be deter-

mined numerically using physics-based methods. For example,

once the directional characteristics of the beam are accounted

for and the scatterer is now of complex shape and is randomly

located in the beam, then the echo becomes a complex func-

tion of the sensor system and scatterer as described in Sec. VII

and the problem may not have a closed form solution. In that

case, the echoes from the rough boundary and scatterer are

each (separately) non-Rayleigh. For these more general scenar-

ios, the summation term in Eq. (59) can be determined through

the phasor summation method using a scattering model of the

rays associated with the object-boundary paths and the back-

ground term can be determined through a scattering model of

the boundary alone. The two terms can be summed coherently

for each realization, and an ensemble of realizations is calcu-

lated to form the echo PDF.

The method of characteristic functions, as described in

Sec. IV C 5, may also be useful, especially if one or both

terms in Eq. (59) has an assumed PDF. For example, it is

common to assume a known statistical function (such as the

Rayleigh or K PDF) for the echo from the boundary alone.

In this case, the PDF associated with the summation term in

Eq. (59) can still be determined using the phasor summation

method. Assuming that the two terms within the absolute

value sign in Eq. (59) are independent of each other and

have random phase, the problem is reduced to the sum of

two random complex independent variables whose individ-

ual PDFs (magnitude) are known.

C. Object(s) in a random waveguide

When a signal travels long enough distances, variability

in the environment can play a significant role in the

FIG. 25. Object in a waveguide. The signal propagates a long distance in the

waveguide due to any combination of interacting with the boundaries and

undulating about a minimum (when present) in wave speed. Although the

waveguide illustrated involves physical boundaries and wave speed mini-

mum, a similar scenario can occur without boundaries, but with the mini-

mum in wave speed remaining (and corresponding undulations) that “traps”

much of the signal energy within imaginary boundaries.
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propagation. The presence of boundaries and heterogeneities

in the medium will redirect the signal through various reflec-

tion, refraction, and scattering processes. In the case involv-

ing two parallel planar boundaries of infinite extent, a

waveguide is formed, and a signal will naturally reflect

repeatedly within the two boundaries as it travels along the

length of the waveguide (Fig. 25). Under other conditions

and without the presence of boundaries, variations in the

medium can cause the signal to be “trapped” within an effec-
tive waveguide. In this latter case, there would be a cross-

waveguide profile of wave speed that reaches a local mini-

mum and the signals will undulate about that minimum

through refraction (Snell’s Law) (Fig. 25). The space

between the imaginary boundaries within which the signal

undulates is also referred to as a waveguide. In some geome-

tries, the propagation in an effective waveguide is further

affected by the presence of one or more real boundaries and

there can be repeated interaction with at least one of the

boundaries every cycle of undulation (Fig. 25). Further com-

plicating the propagation in all of the above cases, random

variations of the surfaces (such as roughness) and of the

properties of the medium (such as wave speed) will tend to

randomize the phase of each ray. In general, in any wave-

guide, there are multiple rays due to multiple paths, and cor-

responding interference between the rays. Because of the

inherent randomness of the natural environment, this inter-

ference will vary, causing ping-to-ping fluctuations.

For the case in which one or more objects of interest are in

a waveguide (whether it involves real or imaginary boundaries),

description of the signals incident upon the object(s) and

receiver of the sensor system is quite complex. The signals will

generally be random variables due to the variable nature of the

waveguide that occurs naturally in the environment. There is a

vast literature on this topic concerning both acoustic and electro-

magnetic fields and, because of the complexity, will generally

require numerical modeling of both the random propagation and

scattering. For example, fluctuations of signals due these phe-

nomena, in general (any medium and type of field), are

described in Jakeman and Ridley (2006). Formulations specific

to sonar in the ocean and reviews of the literature are in Jones

et al. (2014) and Colosi (2016). Analyses specific to wave prop-

agation through the turbulent atmosphere (acoustics and electro-

magnetic) are given in Tatarski (1961). The modeling and

measurements of propagation and bistatic scattering of medical

ultrasound signals through tissue, treated as a continuous ran-

dom medium, are reviewed by Waag (1984).

1. Some simple formulations

Several simple examples adapted from Jones et al.
(2014) are described below to illustrate some of the interfer-

ence phenomena associated with propagation and scattering

in a real or effective waveguide. For simplicity, all examples

are for long single-frequency signals (that is, echoes from all

scatterers completely overlap).

The one-way propagation of a signal through a “frozen”

waveguide due to a point source can be modeled through the

simple equation

SincðRÞ ¼ HðRÞSsource ðone–way propagationÞ; (60)

where SincðRÞ is the (complex) signal in the waveguide inci-

dent at a scatterer at a location R due to a source that is at the

origin (Fig. 25), HðRÞ is the transfer function of the waveguide

between the source and location R, and Ssource is the source

signal in the medium referenced to one meter from the source.

Here, the “signal” in the medium could be a pressure or elec-

tromagnetic wave associated with an acoustic or electromag-

netic sensor system, respectively. The term H is a function of

the waveguide properties which include spatial variability of

the wave speed and, when physical boundaries are present,

material properties of the boundaries relative to those of the

medium, and boundary roughness. Although generally the

properties of waveguides can change temporally, this wave-

guide is considered “frozen” for simplicity, in that any tempo-

ral changes are considered negligible during the time of two-

way propagation of the signal.

The transfer function can be written as the product of its

magnitude H0ðRÞ and an exponential term containing its

phase shift d,

HðRÞ ¼ H0ðRÞejd ðone–way waveguide responseÞ:
(61)

For an arbitrary spatial distribution of N scatterers within the

waveguide at distances from the source much greater than

the thickness of the waveguide, the magnitude of the echo

received through two-way propagation due to a directional

sensor system is

~e ¼
����XN

i¼1

H2
0ðRiÞjf ðiÞbs jbð/iÞejDi

����
ðarbitrary distribution of scatterersÞ; (62)

where the thickness of the waveguide is defined as the separa-

tion between the boundaries or, in the case of an effective

waveguide with no physical boundaries, the amplitude of the

undulation of the signal. The source level from Eq. (60) has

been suppressed, as with all analyses earlier in this tutorial. In

this two-way propagation, the square of the one-way transfer

function is used due to the reciprocity of the waveguide. The

term b is the two-way composite beampattern due to the prod-

uct of the directivity of the co-located source and receiver. As

with Eq. (6), for simplicity in this formulation, all phase shifts

associated with the ith scatterer are in the term Di, which

includes those due to the two-way propagation of the signal,

the scatterer, and beamformer. For wavelengths of the acous-

tic/electromagnetic signal that are small compared with the

differences in the along-range distances between the scatter-

ers, Di will generally be randomly and uniformly distributed

in the range [0 2p] for randomly distributed scatterers.

At these great distances, generally only rays in a narrow

range of angles within the plane normal to the waveguide

boundaries (real or effective) and propagating nearly parallel

to the boundaries will contribute to the signal at location R. To

simplify the formulation, those contributing rays are accounted

for in the transfer function. As a result, the beampattern at
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these great ranges varies only in the azimuthal direction (the

angle / varies in the plane parallel to the boundaries).

Because of the multiple rays that remain within the waveguide,

the signal still varies as a function of distance from a boundary

at these ranges. The scatterers described in Eq. (62) are arbi-

trarily distributed within the waveguide at arbitrary cross-

waveguide and along-waveguide distances and location in the

beampattern. In addition to being far from the source, the scat-

terers are assumed to be far enough from any boundary so that

the scattering process does not significantly involve the prox-

imity of a boundary (i.e., free field scattering is assumed).

Predicting the PDF of the echo for the arbitrary distribu-

tion of scatterers in Eq. (62) involves randomizing the loca-

tion, scattering amplitude (as discussed previously), location

in the beampattern, and phase. The resultant summed pha-

sors are calculated for an ensemble of realizations resulting

in the PDF for the magnitude of the echo.

At these large distances, the patch of scatterers may be

small enough so that they all occur within a narrow range of

azimuthal angles. In this geometry, the beampattern depen-

dence can be taken out of the summation,

~e ¼ bð/Þ
����XN

i¼1

H2
0ðRiÞjf ðiÞbs jejDi

����
ðpatch within narrow range of azimuthal anglesÞ:

(63)

The expression can be further simplified for patches that are

smaller than the correlation length of the waveguide. In this

case, the magnitude of the waveguide transfer function is

approximately constant within the small patch of scatterers

and the function can be taken out of the summation

~e ¼ bð/ÞH2
0ðRÞ

����XN

i¼1

jf ðiÞbs jejDi

����
ðpatch smaller than correlation lengthÞ: (64)

The validity of the above phasor sum formulation to model

echo statistics associated with scatterer(s) in a waveguide has

been tested over a range of conditions in simulation and experi-

mental studies in Jones et al. (2014) and Jones et al. (2017),

respectively. In Jones et al. (2014), propagation and scattering

of sound in ocean waveguides of various complexities were sim-

ulated using the PE (parabolic equation) and compared with the

phasor summation method. In Jones et al. (2017), the analysis

was extended to experimental data involving use of a directional

long-range sonar to detect and classify aggregations of fish in an

ocean waveguide. In this latter experimental study, random

noise was added coherently to the phasor summation to simulate

system noise and background reverberation to fit the low magni-

tude portion of the PDFs of the experimental echo data. In both

studies, it was demonstrated that there was generally reasonable

agreement (but with some departures) between the predictions

of the echo magnitude PDF using the phasor summation and

both the PE simulations and experimental data as a function of

range in which there were both convergence and shadow zones

present, and as a function of number of scatterers present.

In Jones et al. (2014), it was noted that the transfer func-

tion H0ðRÞ of the waveguide should, in principal, be deter-

mined through numerical methods using formulations such

as the PE. However, all applications of the phasor summa-

tion method in both papers by Jones et al. used limiting

closed-form analytical forms of H0ðRÞ, which assumed the

waveguide to be fully saturated, as discussed below.

Although those solutions were based on a saturated wave-

guide, the phasor summation method using those limiting

forms were reasonably successful, as noted above, as a func-

tion of range where the waveguide was not saturated.

The echo magnitude PDFs modeled through use of the

phasor summation method were also shown to generally out-

perform the use of best-fit K PDFs (Figs. 15 and 16 of Jones

et al., 2014). A key element to the success of the phasor

summation method was its ability to predict effects due to

the directional sonar.

2. Closed form solutions for limiting cases involving a
saturated waveguide

Regardless of simplification, calculation of the magni-

tude of the echo and its PDF will generally involve numeri-

cally determining the random phasors for an ensemble of

realizations. However, there are some important cases which

one can solve analytically or at least formulate into a closed-

form solution (Jones et al., 2014). For example, at suffi-

ciently large ranges and associated multiple paths within the

waveguide, the signal at location R is “saturated” in that it

can be described as the summation of many random phase [0

2p] signals. In this limit, the magnitude of the signal at loca-

tion R is Rayleigh distributed. Since the square of a

Rayleigh distributed signal is exponentially distributed, then

the square of the transfer function H2
0ðRÞ is exponentially

distributed.

In the case of the saturated waveguides, four examples

are given below involving patches of scatterers smaller or

larger than the correlation length of the waveguide and those

patches either being fixed at a constant azimuthal angle or

randomly distributed azimuthally across the entire beampat-

tern. As discussed previously, simulations applying the pha-

sor summation using these limiting solutions to signals in a

realistic waveguide as a function of range are given in vari-

ous figures in Jones et al. (2014) and Jones et al. (2017). The

limiting solutions for different scenarios are also summa-

rized in Table III of Jones et al. (2014).

a. Small patch of scatterers. For the case in which the

patch of scatterers is smaller than the correlation length of

the waveguide [Eq. (64)] and there are a large number of

scatterers, each with echoes that have a random phase [0

2p], the magnitude of the summed expression in Eq. (64) is

Rayleigh distributed. For a patch subtended by a narrow

range of azimuthal angles so that bð/Þ can be considered

approximately fixed, then the statistics of the echo magni-

tude are determined by the product of the two random varia-

bles, H2
0ðRÞ and the magnitude of the summed expression,

whose distributions are exponential and Rayleigh, respec-

tively. If that same patch is now randomly distributed

3164 J. Acoust. Soc. Am. 144 (6), December 2018 Stanton et al.



azimuthally, the product has a third random variable bð/ Þ as

a factor, whose statistics are described by the beampattern

PDF given previously. PDFs of the above products of ran-

dom variables can be derived using the closed-form expres-

sion in Sec. IV C 4.

b. Extended patch of scatterers. In another case when

the patch of scatterers is larger than the correlation distance

of the (saturated) waveguide, the transfer function remains

in the summation [Eq. (63)]. For a large number of scatter-

ers, each with echoes that have a random phase [0 2p], then

the magnitude of the summed term in Eq. (63) is Rayleigh

distributed. For the patch subtended by a narrow range of

azimuthal angles so that bð/Þ can be considered to be

approximately fixed, then the magnitude of the echo is

Rayleigh distributed. However, if the patch is randomly dis-

tributed azimuthally, then the echo is the product of the two

random variables, bð/Þ and the magnitude of the summed

term, whose distributions are the beampattern PDF and

Rayleigh PDF as described previously, respectively. Section

IV C 4, again, provides a closed form solution for the product

of these two random variables.

IX. DISCUSSION AND CONCLUSIONS

There has been much success over the years across vari-

ous types of sensor systems and applications in fitting

generic statistical models to experimental echo data.

However, since parameters of these models are not explicitly

related to parameters of the sensor system, environment, or

scattering process, the models are generally not predictive.

Thus, a model fitted to experimental data within one scenario

may not necessarily apply to another.

The use of physics-based models addresses this issue as

these models are derived from physical principles and are

predictive over a wide range of conditions. Parameters of the

echo statistics formulas derived from this approach are

explicitly related to parameters of the sensor system, envi-

ronment, and scattering process. For example, for a given

sensor system and scattering geometry, the shape parameter

of the echo PDF is shown to be a direct function of beam-

width, type of signal, type of scatterer, and number of scat-

terers. These relationships between parameters are useful

over a range of applications, from making inferences of scat-

terer characteristics from parameters of measured echo sta-

tistics data to understanding errors or uncertainties in

predictions of signals that propagate through, and scatter in,

a random or changing environment.

This tutorial presents many of the important concepts

and formulas associated with physics-based echo statistics

methods. Key formulas and illustrations of the major con-

cepts are given, beginning with simple deterministic equa-

tions describing the scattering physics and properties of the

sensor system. While all examples involved a sensor sys-

tem with an axisymmetric beampattern and a uniform dis-

tribution of scatterers, the formulations were general

enough (with some explicitly given) to accommodate a

non-axisymmetric beampattern and non-uniform distribu-

tion of scatterers. Also, while the material focused

principally on the simple direct-path geometry using

single-frequency signals that are long enough for signifi-

cantly overlapping echoes and a homogeneous medium,

cases were also presented involving short pulsed signals

(narrowband and broadband) in which the echoes would

only partially overlap, as well as geometries where the scat-

terer was near a boundary or in a waveguide and the

medium was heterogeneous. Finally, discussions are given

on how to extend these formulations to more complex envi-

ronments and signal processing.

All formulations involved scalar fields applicable to

both acoustic and electromagnetic phenomena. The general

concepts involving scalar fields presented herein can also be

applied or extended to cases involving elastic effects (shear

waves in acoustics) and polarization (electromagnetic signals

such as radar and laser).

An important aspect of the echo statistics is the degree

to which the statistics deviate from the commonly used

Rayleigh PDF. The non-Rayleigh nature of the statistics

was shown to depend strongly upon the beamwidth, type

of signal, type of scatterer, and number of scatterers. For

example, the echo would become more non-Rayleigh

under one or more of the following conditions: (1) the

beamwidth is decreased, (2) the signal is shortened, (3) the

number of scatterers is decreased, and/or (4) the type of

scatterer is changed from one type of scatterer to another

(such as from a point scatterer to a randomly oriented pro-

late spheroid).

In conclusion, regardless of complexity, the most accu-

rate and predictive approach in modeling echo statistics

requires beginning with a physical model of the sensor sys-

tem, environment, and scattering process. The random nature

of the parameters associated with the sensor system, environ-

ment, and scatterers can then be incorporated into the physi-

cal model and directly related to parameters of the statistical

model of the echoes. The approach presented here pro-

gressed from deterministic solutions of the wave equation,

randomizing the parameters of the solutions, to ultimately

predicting the statistical nature of the echo. Through this

physics-based approach, echo statistics can be predicted over

a wide range of important conditions, as illustrated in this

tutorial.
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APPENDIX: GENERIC OR COMMONLY USED
STATISTICAL FUNCTIONS

As discussed in the main text, the majority of models

used in various fields to describe echo statistics are generally

not derived from first principals of scattering physics.

However, for some of these “generic” models, there is some

relation to the scattering, even if not direct, as they are con-

nected to a Gaussian process. These include the Rayleigh,

Rice, K, Weibull, log normal, and Nakagami-m PDFs

(Jakeman and Ridley, 2006; Destrempes and Cloutier,

2010). Some of the commonly used PDFs are presented

below. For completeness, the Rayleigh, Rice, and K PDFs

are briefly summarized, with reference to their respective

sections given above in which they are described in more

detail. Intercomparisons between the below functions are in

Figs. 26 and 27. Since there is not necessarily a rigorous con-

nection between these PDFs and the magnitude of the

FIG. 26. (Color online) Comparison on a linear-linear scale between various generic PDFs commonly used to model echo magnitude statistics over a range of

their shape parameters shown in the respective legends: (a) Rice, (b) K, (c) Weibull, (d) Log-normal, (e) Nakagami-m, (f) Generalized Pareto PDFs. The

Rayleigh PDF is given in a thick solid black curve in each panel. The terms p and x are used to denote the PDF and its argument, respectively, for each of the

different statistical functions. All curves are calculated using the analytical solutions given in the Appendix or main body of this tutorial. With each function

plotted on a normalized scale, the curves are independent of the mean square magnitude of the signal and only depend upon their shape parameters (with the

exception of the Rayleigh PDF which, once normalized, has no free parameters). The software used to produce this figure is in the supplementary material at

https://doi.org/10.1121/1.5052255. The software is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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scattered signal, the term w (with subscript) is used to denote

the argument of each PDF.

There are also a number of useful PDFs not presented

below. For example, the Poisson-Rayleigh PDF (McDaniel,

1993; Fialkowski et al., 2004), which involves a sum of

Rayleigh PDFs weighted by the Poisson PDF. Also not pre-

sented, the following PDFs that can be described through com-

pound representation are reviewed in Destrempes and Cloutier

(2010): Rician inverse Gaussian PDF (RiIG), generalized

Nakagami, Nakagami-gamma (NG), and Nakagami-

generalized inverse Gaussian (NGIG). Here, the inverse

Gaussian (IG) and generalized inverse Gaussian (GIG) PDFs

are non-Gaussian functions with semi-heavy tails (Eltoft,

2006).

Considering the many types of generic PDFs that are

applicable to echo statistics problems, Destrempes and

Cloutier (2010) have presented a unified review that

describes many of these PDFs in terms of three key aspects

of the compound representation: (1) the modulated

distribution (Rice or Nakagami) whose parameters are

FIG. 27. (Color online) Same PDF curves as in Fig. 26, but on a logarithmic-logarithmic scale: (a) Rice, (b) K, (c) Weibull, (d) Log-normal, (e) Nakagami-m,

and (f) Generalized Pareto PDFs. The software used to produce this figure is in the supplementary material at https://doi.org/10.1121/1.5052255. The software

is also stored online (Lee and Baik, 2018), where it is subject to future revisions.
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modulated by another distribution, (2) the modulating dis-

tribution (gamma, inverse Gaussian, or generalized inverse

Gaussian) that is used to modulate one or more of the

parameters of the modulated distribution, and (3) the mod-

ulated parameters (diffuse and/or coherent components) of

the modulated distribution. See, for example, Table 2 of

that paper that summarizes the three aspects for some of

the PDFs.

1. Rayleigh PDF

In the limit of an infinite number of random phase

sinusoids, the instantaneous amplitude (not magnitude) is

a complex Gaussian in which both the real and imaginary

components of the signal are Gaussian-distributed varia-

bles with the same variance. The magnitude of the instan-

taneous signal (i.e., its envelope) is Rayleigh distributed,

whose equation is given in Eq. (21). In addition to being

applied to modeling the statistics of white noise and, as

discussed in Sec. IV C 6, this distribution can also be

directly connected to the scattering physics in the case of a

high number of scattering features whose echoes overlap

and are of random phase (uniformly distributed [0 2p]).

The scattering features could be from multiple scatterers,

a rough boundary, or an object with a complex shape or

rough boundary.

2. Rice PDF

In the case of a single sinusoid of constant amplitude

added to a signal whose magnitude is Rayleigh distributed,

the magnitude of the instantaneous summed signal is

Rice distributed, as given in Eq. (26). While originally devel-

oped to describe the statistics of a signal in the presence of

white noise, it can also be directly related to the scattering

physics. For example, as discussed in Sec. VI A 2, the constant

signal could correspond to an individual scatterer of interest

whose echo remains constant and the Rayleigh-distributed

component could be the echo from a neighboring rough

boundary or cloud of scatterers. In the limit of the scattering

by the individual being strong or weak relative to the diffuse

background scattering, the echo (Rice) PDF approaches a

Gaussian or Rayleigh PDF, respectively.

3. K PDF

The K PDF, given in Eq. (29), can be derived several

ways. Two approaches involve sums of sinusoidal signals:

(a) when the number of sinusoids follows a negative bino-

mial PDF and with the average number tending to infinity

and (b) for a finite number of sinusoids whose amplitudes

follow an exponential PDF. Two other approaches involve

the “compound representation” that uses existing statistical

functions where the K PDF can be derived from (c) the prod-

uct of a Rayleigh-distributed random variable and a random

variable that is chi distributed and (d) a Rayleigh PDF whose

mean-square value is gamma distributed. Under certain lim-

ited conditions, the sinusoids in derivations (a) and (b) can

be rigorously and directly related to the scattering physics by

connecting the distribution of sinusoids to a corresponding

distribution of scatterers (whose echoes are convolved with

the beampattern of the sensor system).

As discussed in Sec. VI A 3, the original K PDF is a

two-parameter function and is associated with sinusoids with

phases that are randomly and uniformly distributed [0 2p].

The generalized K PDF (not shown) involves the more gen-

eral case when the distribution of phases is not uniform and

can be related to, for example, the echo from one or several

large scatterers in the presence of an extended diffuse scat-

terer such as a rough boundary. This latter distribution, and a

more restricted form (homodyned K PDF), have three

parameters. While all of these K-based PDFs can be rigor-

ously connected to the scattering physics under only a nar-

row range of conditions, these distributions have been

demonstrated to reasonably fit experimental echo statistics

data from objects and boundaries over a much wider range

of conditions.

4. Weibull PDF

The distribution of intensity IR (square of magnitude) of

a Rayleigh-distributed random variable is a negative expo-

nential PDF. Using the transformation IR¼ w�
W yields the

Weibull PDF

pW wWð Þ ¼ �

kR
w��1

W e�w�
W=kR ; (A1)

where kR ¼ hIRi is the mean intensity of the original

Rayleigh random variable as given in Eq. (21) (Jakeman and

Ridley, 2006). This PDF for wW , whose derivation involves

a Gaussian process, has been used for both magnitude and

intensity statistics. The PDF becomes a negative exponential

(intensity-like) and Rayleigh PDF (magnitude-like) when �
is equal to 1 and 2, respectively. Furthermore, since the K

PDF becomes a negative exponential when its shape parame-

ter aK in Eq. (29) is equal to 1/2, then the Weibull and K

PDFs become the same PDF (negative exponential) when �
and aK are equal to 1 and 1/2, respectively.

5. Log normal PDF

The log normal PDF involves a variable whose loga-

rithm is Gaussian distributed. The magnitude wLN can be

written as wLN ¼ Cex where x is Gaussian distributed with a

mean and variance of zero and r2
LN , respectively, and C is a

constant. It follows that the PDF of wLN is (Jakeman and

Ridley, 2006)

pLN wLNð Þ ¼ 1

wLN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

LN

p e� ln wLN�ln Cð Þ2=2r2
LN : (A2)

Although there is not a direct connection between this PDF

and backscattering, the signal of a propagating field some-

times decreases exponentially, with x being a negative quan-

tity in ex above. The term x can be related to absorption and

scattering-related loss of signal. The absorption and scatter-

ing may be variable, causing fluctuations or scintillation in

the forward-propagating signal which, in turn, will result in

fluctuations of the backscattered signal as it relates to the
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local (fluctuating) value of the signal incident upon a scat-

terer. There will be additional fluctuations incurred in the

backscattered signal as it propagates back to the sensor sys-

tem. The PDF of intensity w2
LN takes on the same functional

form as the above equation, but with different constant fac-

tors in the exponent (page 399 of Goodman, 1985).

6. Nakagami-m PDF (and related chi-squared and
gamma PDFs)

The Nakagami-m, chi-squared, and gamma PDFs are

related to each other, as they all involve incoherent processes

in which the signal is composed of the incoherent addition

(sum of squares) of m independent, Rayleigh-distributed var-

iables. Or, equivalently, the signal is made up of the sum of

the squares of 2m independent Gaussian-distributed varia-

bles. Although this incoherent process does not directly

relate to a scattering process which involves the coherent
sum of random variables (i.e., sum of complex signal), there

has been success in using these PDFs to model echo

statistics.

The Nakagami-m is concerned with the statistics of the

magnitude of the signal whereas the chi-squared and gamma

PDFs describe the PDF of the square (i.e., intensity) of the

signal. The chi-squared PDF relates to an integer number of

Rayleigh-distributed variables and the gamma PDF is an

analytical continuation of that PDF for non-integer numbers

of variables. The equations for all three PDFs have a similar

form and are expressed in terms of a gamma function. This

section will focus on the Nakagami-m PDF since it is most

relevant to the magnitude statistics in this paper.

In this model, the random variable wN is defined as the

square root of the sum of the squares of m independent

Rayleigh random variables. The resultant PDF of wN is the

Nakagami-m PDF (Nakagami, 1960; Karagiannidis et al.,
2003; Eltoft, 2006)

pN wNð Þ ¼ 2mmw 2m�1ð Þ
N

C mð ÞXm e�mw2
N=X; (A3)

where C is the gamma function. The terms m and X are shape

and scaling parameters, respectively, where X ¼ hw2
Ni. As

with the gamma PDF, through analytical continuation, the

term m can be a non-integer. And, as discussed above, while

the Nakagami-m PDF is used to model fluctuations of signal

magnitude, wN does not rigorously represent the magnitude of

the signal, as it is related to an incoherent (sum of squares),

rather than a coherent (sum of complex variables) process

associated with the scattering.

The Nakagami-m PDF reduces to the Rayleigh and

“one-sided” Gaussian PDFs for m¼ 1 and 1/2, respectively.

Here, the one-sided Gaussian is a Gaussian PDF with its

peak at an argument of zero and is only evaluated for non-

negative values of argument. The Nakagami-m PDF also

takes on qualitatively similar shapes to the Rice PDF for

higher values of m (Nakagami-m) and c (Rice) where both

curves are Gaussian-like (Figs. 26 and 27). For example the

Nakagami-m PDF, when calculated for the values m¼ 3,

3.9, and 5, looks similar to the Rice PDF when calculated for

the values c¼ 5, 6.9, and 9, respectively (not shown).

7. Generalized Pareto PDF

The generalized Pareto PDF is based on extreme value

theory, which focuses on either the minimum or maximum

values of a signal (Pickands, 1975; La Cour, 2004). In this

case, the generalized Pareto PDF has been derived to

describe the tails of the PDF (i.e., more than simply the max-

imum values). The generalized Pareto PDF is

pGP wGPð Þ ¼
1þ qwGP

n

� �� 1=qð Þ�1

n
; (A4)

where q and n are the shape and scale parameters, respec-

tively. While this PDF is not specific to magnitude or inten-

sity, this has been shown to successfully describe the tails of

the intensity of non-Rayleigh echoes (La Cour, 2004; Gelb

et al., 2010). Note that this PDF can only be normalized for

values of q < 1=2, otherwise the integration diverges. Also,

when q ¼ �2, the range of wGP is limited to prevent the

argument of the square root term from becoming negative

above a certain value of wGP.
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