A controlled laboratory experiment of broadband acoustic backscattering from live squid (Loligo pealeii) was conducted using linear chirp signals (60-103 kHz) with data collected over the full 360° of orientation in the lateral plane, in <1° increments. The acoustic measurements were compared with an analytical prolate spheroid model and a three-dimensional numerical model with randomized squid shape, both based on the distorted-wave Born approximation formulation. The data were consistent with the hypothesized fluid-like scattering properties of squid. The contributions from the front and back interfaces of the squid were found to dominate the scattering at normal incidence, while the arms had a significant effect at other angles. The three-dimensional numerical model predictions out-performed the prolate spheroid model over a wide range of orientations. The predictions were found to be sensitive to the shape parameters, including the arms and the fins. Accurate predictions require setting these shape parameters to best describe the most probable squid shape for different applications. The understanding developed here serves as a basis for the accurate interpretation of in situ acoustic scattering measurements of squid.